logo search
ЛабРаб_ЭП_6д

Широтно-импульсное управление двигателем постоянного тока

  1. Цель работы

Практическое изучение принципа регулирования частоты вращения двигателя постоянного тока с помощью широтно-импульсного регулятора. Оценка влияния частоты коммутации и индуктивности якорной цепи двигателя на качество регулирования. Исследование механических характеристик электропривода при действии обратной связи по скорости вращения.

  1. Указания к самостоятельной работе

При подготовке к лабораторной работе необходимо по учебникам, конспектам лекций изучить тему «Электроприводы постоянного тока с широтно-импульсным управлением»: устройство, принцип действия, способы регулирования частоты вращения, механические и регулировочные характеристики в разомкнутой и замкнутой системе регулирования [1,2], а также лабораторный практикум к выполнению лабораторной работы 5.

  1. Принцип действия, характеристики системы широтно-импульный преобразователь двигатель постоянного тока и описание лабораторного стенда

3.1 Принцип действия, характеристики системы ШИП-ДПТ

Принцип широтно-импульсного управления двигателя постоянного тока поясняет рис. 3.1. На схеме штриховой линией очерчен электронный ключ VS, который периодически подключает цепь якоря двигателя М на выход неуправляемого выпрямителя V с напряжением ud. На отрезке времени tо, когда ключ VS замкнут, ток iя якоря двигателя создается напряжением Ud. При этом часть энергии, поставляемой выпрямителем V, запасается в якоре двигателя М в виде магнитного поля.

На отрезке времени tз, когда ключ VS разомкнут, ток iя якоря двигателя М протекает в прежнем направлении, но через шунтирующий диод VD, используя для этого энергию электромагнитного поля индуктивностей якорной цепи двигателя М.

Рис 3.1. Схема (а) и диаграмма (б) напряжений и тока при широтно-импульсном управлении

Среднее значение напряжения uя на якоре двигателя М за период TК коммутации VS ключа определяется по формуле

(3.1)

где­ скважность импульсов; ­ напряжение на выходе выпрямителяV.

Таким образом, напряжение Uя определяется путем изменения скважности импульсов. Для изменения скважности импульсов применяется широтно-импульсный модулятор ШИМ (рис. 3.1,a).

ШИМ состоит из генератора опорного напряжения (ГОН), нуль-органа сравнения (НО) и формирователя выходных импульсов (ФИ). Генератор ГОН вырабатывает треугольное напряжение u0 c частотой fк=1/Tк, которое сравнивается в НО с управляющим напряжением uу. В момент равенства этих напряжений и при условии, что Uу > u0, ФИ вырабатывает импульсы, включающие VS. При импульсном управлении ток в якоре двигателя М имеет колебательный характер. При этом пульсации составляют (2-10)% от номинального значения тока якоря. Величина пульсаций I якорного тока определяется выражением

(3.2)

где rя, Lя - соответственно активное сопротивление и индуктивность якорной цепи двигателя М; - электромагнитная постоянная времени якорной цепи двигателя.

Из уравнения (3.2) видно, что величина пульсаций якорного тока обратно пропорциональна частоте коммутации fк и электромагнитной постоянной Тэ , а также зависит от величины скважности  импульсов. Наибольшие пульсации якорного тока возникают при =0,5. Для уменьшения пульсаций тока целесообразно увеличивать частоту коммутации ключа. В преобразователях с тиристорными ключами частота коммутации выбирается в пределах 200 - 2000 Гц, в преобразователях на транзисторах - в пределах 2 - 40 кГц.

Для обеспечения тормозных режимов при регулировании скорости вращения и сбросе нагрузки используется схема с двумя силовыми ключами (рис.3.2,а). Если в схеме работают ключ VS1 и диод VD1, то имеет место двигательный режим работы электропривода (сплошные стрелки). При этом энергия на движение вала потребляется из сети постоянного тока. При работе ключа VS2 и диода VD2 электропривод переводится в тормозной режим (штриховые стрелки) с рекуперацией энергии движения вала в сеть. Диаграмма тока iя якоря и тока iс питающей сети соответственно для двигательного и тормозного режимов изображены на рис. 3.2, б и в. Диаграмма токов показывает, что ток iс сети носит импульсный характер с изменением направления при тормозном режиме.

Для повышения эффективности торможения, особенно при низких скоростях вращения вала, необходимо увеличить время замыкания ключа VS2 и иметь в цепи якоря достаточную суммарную индуктивность.

Рис. 3.2. Схема (а), диаграмма (б и в) работы и механические характеристики электропривода с широтно-импульсным управлением

Механические характеристики электропривода с широтно-импульсным управлением для двухквадрантного режима работы представлены на рис 3.2,г. Характеристики не имеют области прерывистых токов, и их жесткость определяется активным сопротивлением якоря двигателя М. Уравнение механических характеристик может быть записано в виде:

(3.3)

где - скорость вращения холостого хода;- постоянная двигателя М;- ток короткого замыкания цепи якоря.

В импульсных преобразователях в качестве электронных ключей применяются силовые транзисторы и транзисторные модули, которые должны надежно работать в широких пределах входного напряжения и тока нагрузки, иметь высокую перегрузочную способность и обеспечивать требуемую частоту fк коммутации.