4.1. Електрооптичні пристрої
Електрооптичні пристрої реалізуються на широкому класі матеріалів, які включають як напівпровідникові матеріали і (наприклад, ), так і активні діелектрики – ніобати літію, танталу, калію тощо. Найбільшу цікавість викликають модулятори-перемикачі. До них належать модулятори-перемикачі на основі ефекту тунельної перекачуванни світла (або модулятори-перемикачі на зв’язаних хвилеводах, модулятори-перемикачі інтерференційного типу).
В основі роботи електрооптичних модуляторів-перемикачів лежить електрооптичний ефект Поккельса. Суть його полягає в тому, що в деяких оптичних матеріалів показник заломлення змінюється пропорційно прикладеній напруженості електричного поля.
Величина лінійного електрооптичного ефекту, що визначається зміною показника заломлення , пов’язана з напруженістю поля виразом:
, (4.1.1.)
де – показник заломлення матеріалу у відсутності електричного поля, – електрооптичний коефіцієнт (тензорна величина). У результаті світло, яке пройде в такому матеріалі шлях , набуває фазової затримки величиною:
. (4.1.2)
Отже, відбувається відповідна модуляція хвилі за фазою. На відміну від об’ємних оптичних пристроїв, де для аналізу подібного типу модуляції широко застосовуються додаткові пристрої (наприклад поляризатори), в інтегральній оптиці перетворення фазової модуляції в амплітудну здійснюється за допомогою різних інтерференційних схем. Якщо між інтерферуючими пучками існує різниця фаз, то в результуючому полі це проявляється як модуляція інтенсивності.
До основних характеристик модуляторів належить глибина модуляції (коефіцієнт модуляції) та ширина смуги модулюючих частот , яка у свою чергу визначає об’єм інформації, що обробляється.
Узагальненим показником якості є величина питомої потужності або фактор якості, який визначається як потужність збудження до одиниці смуги частот при еквівалентній 84 % модуляції інтенсивності.
Як правило, основою хвилевідного модулятора є діелектричний хвилевід, наприклад ніобат літію або танталу . Далі технологією дифузії або епітаксіального росту формують структуру із заданими властивостями.
П а б Рис. 4.1.1
Для отримання максимальних електрооптичних коефіцієнтів керуюче електричне поле повинно бути спрямовано вздовж осі . Це у свою чергу накладає обмеження на конструкцію електродів модулятора. У випадку використання -зрізу (рис.4.1.1, а) електроди розташовані симетрично по обидва боки хвилеводу. Як наслідок - керуючою складовою електричного поля є його паралельна складова . В активних елементах на -зрізі (рис. 4.1.1, б) для зберігання напрямку модулюючого поля вздовж осі один з електродів наноситься зверху на хвилевідний шар 1 і робочою складовою є вертикальна складова електричного поля . Акцентуємо увагу на тому, що матеріалом керуючого електрода є метал. Як наслідок, хвилевідна мода, яка розповсюджується по хвилеводу з металевою границею, є затухаючою. Для того, щоб уникнути цього, між електродом та хвилеводом нанесений тонкий ізолюючий шар з низьким (відносно хвилеводу) показником заломлення. Це загальноприйнятий технологічний прийом і далі, коли ми будемо говорити про те, що на поверхню хвилеводу нанесений шар, який є провідником (за винятком спеціальних випадків, коли необхідно створити виведення випромінювання з хвилеводу), то будемо мати на увазі, що він відокремлений від хвилеводу ізолятором. В основному як буферний шар використовують окісні плівки алюмінію ( ) або кремнію ( ) товщиною близько 20 мкм.
Схема, наведена на рисунку 4.1.1, ілюструє також основні схемні конфігурації хвилевідних активних елементів із зосередженими параметрами (рис. 4.1.1, а) та типу біжучої хвилі (рис. 4.1.1, б). Для схем із зосередженими параметрами електроди створюють зосереджену ємність модулятора перемикача. Його смуга частот обмежується добутком ємності електродів на величину опору навантаження і часом розповсюдження світлового потоку через перемикач-модулятор.
У схемі типу біжучої хвилі світло і модулююча хвиля надвисокої частоти (близько гигагерц) розповсюджуються в одному напрямку. Якщо фазові швидкості керуючого електричного поля й оптичного випромінювання рівні, величина ємності електродів і час розповсюдження світла через модулятор не впливають на смугу частот. Смуга частот обмежується ступенем разузгодження швидкостей оптичної та надвисокочастотної хвиль. Якщо таке разузгодження невелике, то характеристики модулятора погіршуються мало. Додамо, що модулятори-перемикачі типу біжучої хвилі характеризуються також більш високою ефективністю порівняно зі структурами із зосередженими параметрами. Для модуляторів з паралельними пластинами відношення факторів якості складає:
. (4.1.3)
- Мохунь і.І.
- Інтегральна оптика в інформаційній техніці
- 1. Оптичний сигнал і його розповсюдження
- 1.2. Зміна фази хвилі при її розповсюдженні
- 1.2.1.Фазова затримка
- 1.2.2. Фазова затримка, що вноситься тонким оптичним елементом
- 1.2.3. Фазова затримка, що вноситься тонкою збираючою лінзою
- 1.3. Математичні основи аналогових оптичних процесорів
- 1.3.1. Перетворення Фур’є
- 1.3.3.1. Геометричне тлумачення згортки і кореляції
- 1.3.3.2. Фур’є-образ згортки і кореляції
- 1.4. Розповсюдження оптичної хвилі
- 1.4.1. Розповсюдження оптичної хвилі у вільному просторі
- 1.4.2. Реалізація фур’є-перетворення в оптиці і в інтегральній оптиці зокрема
- 2. Теорія оптичного хвилеводу
- 2.2. Оптико-геометричний підхід до фізики плоского хвилеводу
- 2.2.1. Дисперсійне рівняння хвилеводу
- 2.2.3. Ефективна товщина хвилеводу
- 2.2.4. Довжина оптичного “зигзагу”
- 2.2.5. Кількість мод, які можуть розповсюджуватися у хвилеводі
- 2.2.6. Різниця між коефіцієнтами заломлення хвилеводу та оточуючих шарів.
- 2.3. Реальний хвилевід
- 2.4. Дисперсія у хвилевідній системі
- 2.4.1. Хроматична дисперсія
- 2.4.2. Модова дисперсія
- 2.5. Розповсюдження хвиль у градієнтному хвилеводі
- 3. Базові елементи інтегральної оптики. Пасивні елементи
- 3.1. Елементи введення-виведення (інтегрально-оптичні елементи зв’язку)
- 3.1.1. Призмовий елемент введення-виведення
- 3.1.2. Решітчастий елемент введення-виведення
- 3.2. Планарні оптичні елементи
- 3.2.1. Лінзи Люнеберга
- 3.2.2. Геодезична лінза
- 3.2.3. Дифракційні лінзи
- 4. Активні елементи інтегральної оптики
- 4.1. Електрооптичні пристрої
- 4.1.1. Модулятори-перемикачі на основі ефекту тунельної перекачуванни світла, або модулятори-перемикачі на зв’язаних хвилеводах
- 4.1.2. Модулятори-перемикачі інтерференційного типу
- 4.1.3. Електрооптичні модулятори на основі ефекту Брега
- 4.1.4. Електроабсорбційні модулятори
- 4.2. Акустооптичні модулятори
- 4.3. Магнітно-оптичні модулятори
- 4.4. Генерація світла в системах інтегральної оптики
- 5. Інтегральна оптика в приладах і пристроях
- 5.1. Датчики фізичних величин та пристрої на основі решітчастих елементів введення-виведення
- 5.1.1. Кутовимірювальні датчики
- 5.1.2. Хвилевідні фільтри на основі явищ аномального відбивання пропускання
- 5.2. Інтегрально-оптичні пристрої обробки інформаційних сигналів. Принципи оптичної хвилевідної обробки сигналів. Методи побудови оіс для інформаційної техніки
- 5.2.1. Типи та основні класи оіс для обробки інформації
- 5.2.2. Оіс для обробки сигналів
- 5.2.2.1. Інтегрально-оптичні спектроаналізатори високочастотних сигналів
- 5.2.2.2. Інтегрально-оптичні корелят ори
- 5.3. Аналого-цифрові перетворювачі. Чотири розрядний ацп
- 5.4. ОІс для обчислювальної техніки
- 5.4.2. Приклади побудови логічних елементів
- 6. Нейронні і нейроподібні мережі та їх оптична реалізація.
- 6.1. Структура нейронних мереж.
- 6.2.Алгоритм роботи нейронної мережі. Алгоритм Хопфілда
- 6.3. Перспективи розвитку оптичних нейронних мереж.
- 6.4. Реалізація оптичних нейронних мереж
- 6.4.1 Оптична нейронна мережа з процесорним ядром у вигляді безопорнрої голограми.
- 6.4.2. Оптична нейронна мережа з процесорним ядром у вигляді узгодженого фільтра.
- 6.4.3. Недоліки і переваги обох систем.
- 7. Оптичний зв’язок відкритими каналами
- 7.1. Розповсюдження світла через атмосферу
- 7.1.1. Молекулярне поглинання
- 7.1.2. Поглинання та розсіювання рідкими або твердими частинками
- 7.1.3. Атмосферна турбулентність
- 7.2. Макрохвилеводи
- Волоконно-оптичні лінії зв’язку. Пасивні та активні елементи восп
- 1. Фізичні характеристики оптичного волокна
- 1.1. Основні елементи оптичного волокна
- 1.2. Типи і характеристики оптичного волокна
- 1.2.1. Профілі показника заломлення
- 1.3. Властивості оптичних волокон як передаючого середовища
- 1.3.1. Поглинання в оптичних волокнах
- 1.3.2. Дисперсія
- 1.4. Геометричні параметри волокна
- 1.4.1. Відносна різниця показників заломлення ядра та оболонки
- 1.4.2. Числова апертура волокна
- 1.4.3. Нормована частота
- 1.4.4. Хвиля відсічки
- 1.4.5. Наближена оцінка міжмодової дисперсії багатомодового волокна
- 1.5. Характеристики оптичних волокон згідно з рекомендаціями itu-t
- 1.6. Нелінійні оптичні явища в одномодових волокнах
- 1.6.1. Фазова самомодуляція (фсм) та перехресна фазова модуляція (фкм)
- 1.6.2. Вимушене комбінаційне (Раманське) розсіяння вкр (srs) і розсіяння Мандельштама-Бриллюена врмб (sbs)
- 1.7. Одномодові волокна нових типів виробництва компаній lucent technologies cornigs.
- 2. Оптичні кабелі
- 2.1. Особливості конструкції оптичних кабелів
- 2.2. Монтаж оптичних кабелів
- 2.2.1. Аналіз втрат, які виникають у процесі монтажу оптичних кабелів зв’язку
- 2.2.2. Методи з’єднання оптичних волокон
- 2.2.3. Зварні з’єднання
- 2.2.4. Клейові з’єднання
- 2.2.4. Механічні з’єднувачі
- 2.2.5. Рознімні з’єднання
- 3. Пасивні оптичні елементи волз
- 3.1. Волоконно-оптичні відгалужувачі і розгалужувачі
- 3.1.1. Зварні відгалужувачі
- 3.1.2. Відгалужувачі із градієнтною циліндричною лінзою
- 3.1.3. Спектрально-селективні розгалужувачі (мультиплексори/демультиплексори)
- 3.2. Волоконно-оптичні перемикачі
- 3.2.1. Електромеханічні перемикачі
- 3.2.2. Термооптичні перемикачі
- 3.2.3. Електрооптичні перемикачі
- 3.2.4. Оптичні ізолятори
- 4. Активні елементи волз
- 4.1. Джерела випромінювання
- 4.1.1. Світлодіоди
- 4.1.2. Лазерні діоди (лд)
- 4.1.3. Фабрі-Перо-лазер
- 4.1.4. Лазери з розподіленим оберненим зв’язком (роз-лазери) і розподіленим брегівським відбиванням (рбв-лазери)
- 4.1.5. Лазерні діоди із зовнішнім резонатором
- 4.1.6. Найважливіші характеристики джерел випромінювання для волз
- 5.2. Складові елементи передавального оптоелектронного модуля
- 5. Приймальні оптоелектронні модулі. Ретранслятори, підсилювачі
- 5.1. Приймальні оптоелектронні модулі (пром)
- 5.1.1. Функціональний склад пром
- 5.1.3. Лавинні фотодіоди
- 5.1.4. Технічні характеристики фотоприймачів
- 5.2.5. Таймер
- 6. Повторювачі та оптичні підсилювачі
- 6.1. Типи ретрансляторів
- 6.1.1. Повторювачі
- 6.1.2. Оптичні підсилювачі
- 6.1.3. Підсилювачі Фабрі-Перо
- 6.1.4. Підсилювачі на волокні, які використовують бріллюенівське розсіювання
- 6.1.5. Підсилювачі на волокні, які використовують раманівське розсіювання
- 6.1.6. Напівпровідникові лазерні підсилювачі
- 6.2. Підсилювачі на домішковому волокні. Волоконно-оптичні підсилювачі
- 6.3. Інші характеристики ербієвих волоконних підсилювачів
- 6.4. Схеми накачування ербієвого волокна воп
- Список літератури до частини іі
- Волоконно-оптичні системи передавання
- 1. Сигнали та системи передавання інформації
- 1.1. Системи передавання цифрових сигналів
- 1.1.1. Основні поняття і термінологія
- 1.2. Структура систем зв’язку
- 1.3. Способи передавання сигналів
- 1.3.1. Послідовне і паралельне передавання сигналів
- 1.3.2. Синхронне та асинхронне передавання сигналів
- 1.3.3. Поелементне передавання сигналів
- 1.3.4. Передавання сигналів кодовими комбінаціями
- 1.4. Особливості каналів зв’язку
- 1.4.1. Особливості аналогових каналів зв’язку
- 1.4.2. Особливості цифрових каналів зв’язку
- 1.5. Параметри цифрової системи зв’язку
- 2. Волоконно-оптичні системи зв’язку
- 2.1. Структура волоконно-оптичної лінії зв’язку
- 2.2. Переваги використання оптичних волокон у системах зв’язку
- 3. Проектування (планування) волоконно- оптичної лінії зв’язку
- 3.1. Аналіз смуги пропускання волз
- 3.2. Втрати і обмеження в лініях зв’язку
- 4. Системи передавання інформації
- 4.1. Системи зв’язку плезіохронної цифрової цифрової ієрархії
- 4.1.1. Системи зв’язку для ліній зв’язку первинної цифрової ієрархії е1
- 4.1.2. Системи зв’язку для ліній зв’язку вторинної цифрової ієрархії е2
- 4.1.3. Системи зв’язку для ліній зв’язку третинної цифрової ієрархії е3
- 4.1.4. Системи зв’язку цифрової плезіохронної ієрархії е4
- 4.2. Системи і обладнання синхронної цифрової ієрархії
- 4.2.1. Синхронна цифрова ієрархія та мережі
- 4.2.2. Апаратура сці (sdh)
- 4.2.3. Апаратура sdh компанії Lucent technologies
- 4.2.4. Апаратура сці виробництва фірми siemens
- 5. Методи ущільнення інформаційних потоків
- 5.2. Метод часового ущільнення
- 5.3. Модове ущільнення
- 5.4. Ущільнення за поляризацією
- 5.6. Оптичне часове ущільнення (otdm)
- 5.7. Методи ущільнення каналів за полярністю
- Список літератури до частини ііі:
- 8. Мохунь і.І, Полянський п.В. Інтегральна оптика в інформаційній техніці. Конспект лекцій. – Чернівці, Рута, 2002, – 79 с.
- Задачі та практичні питання до курсів
- І. Інтегральна оптика в інформаційній техніці
- Іі. Волоконно-оптичні системи передавання.
- Додаток 1 Розрахунок регенераційної ділянки волз
- 1.3. Втрати потужності на з’єднаннях:
- 1.2. Втрати потужності на введення-виведення .
- 1.3. Втрати потужності на з’єднаннях:
- 2. Зберігання форми переданого сигналу, можливість відновлення його початкової форми.
- Перевід величини втрат з відсотків до дБ та навпаки