6.4.1 Оптична нейронна мережа з процесорним ядром у вигляді безопорнрої голограми.
Н ехай в оптичну систему, зображену на рисунку 6.4.1, а подається поле , яке умовно розбите на поля та . Тоді у фокальній площині об’єктиву сформується поле :
(6.4.1)
де Фур’є-образи полів та відповідно.
Інтенсивність поля в площині описується співвідношенням:
Рис. 6.4.1
Нехай в площині розміщений фото чутливий матеріал (ФЧМ), зміна локальних параметрів, якого (наприклад, почорніння) відбувається пропорційно до інтенсивності. Тоді можна вважати, що в цій площині записується транспарант з пропусканням . Аналогічним чином на одне місце ФЧМ може бути записане декілька розподілів інтенсивності, що відповідають різним вхідним полям. Отже в кінцевому випадку пропускання транспаранту може бути описане виразом:
(6.4.3)
Такій процес запису транспаранта може бути названий як процес „навчання” системи.
Зробимо ще декілька припущень:
Вхідні поля та мають відносно дрібну структуру.
Поля та абсолютно різні, якщо і навіть .
Тоді справедливим є співвідношення:
(6.4.4)
Нехай на вхід системи подається поле (див. Рис. 6.4.1, b), близьке до будь-якого образу, наприклад, ,записаного в системі. Тоді кореляційна функція
(6.4.5)
де , не рівна нулю.
Поле в площині описується виразом:
(6.4.6)
де об’єднує всі інші доданки.
Розташуємо після транспаранту (див Рис. 6.4.1, b), ще один оптичний каскад з об’єктивом , якій розташований на фокусній відстані від транспаранту. Тоді (враховуючи, що ми домовилися, що в оптиці ми не розрізняємо пряме та обернене Фур’є-перетворення) в його задній фокальній площині поле є Фур’є-образом від поля :
(6.4.7)
Кожний з доданків (6.4.7) є Фур’є перетворенням від добутку трьох функцій і при застосуванні теорем про Фур’є-перетворення добутку двох функцій та теорем про згортку та кореляцію може бути обчислений за такою схемою:
(6.4.8)
Результат такої операції для третього доданку згідно з (6.4.4) прямує до 0, оскільки при цьому отримуємо так звані кросс-кореляційні функції (кореляційні функції різних величин (друге рівняння співвідношення)). Цей доданок формує шум системи (аналогічно другому доданку в (6.2.6)).
1-ий та 2-ий доданки формують поле, яке описується виразом:
+шум (6.4.9)
Звідси, згідно з (1.3.7), отримуємо
+шум, (6.4.10)
ослаблене в разів зображення полів та . За допомогою просторово-часових модуляторів, цифрового комп’ютера та додаткових світлоподілювачив можна знову подати на вхід системи. Це призведе до відповідного перерозподілу інтенсивності між полями , та шумовою компонентою Шумова компонента зменшиться. Крім цього на виході системи можна покласти нелінійний пристрій, якій додатково буде проводити підсилення корисного сигналу та підгашувати шумову компоненту. Отже дію такої системи можна розглядати як дію аналогічну дії нейтронної мережі. Так само як НМ система з безопорною голограмою працює як АЗП і скочується до певного образу, що записаний на безопорній голограмі.
- Мохунь і.І.
- Інтегральна оптика в інформаційній техніці
- 1. Оптичний сигнал і його розповсюдження
- 1.2. Зміна фази хвилі при її розповсюдженні
- 1.2.1.Фазова затримка
- 1.2.2. Фазова затримка, що вноситься тонким оптичним елементом
- 1.2.3. Фазова затримка, що вноситься тонкою збираючою лінзою
- 1.3. Математичні основи аналогових оптичних процесорів
- 1.3.1. Перетворення Фур’є
- 1.3.3.1. Геометричне тлумачення згортки і кореляції
- 1.3.3.2. Фур’є-образ згортки і кореляції
- 1.4. Розповсюдження оптичної хвилі
- 1.4.1. Розповсюдження оптичної хвилі у вільному просторі
- 1.4.2. Реалізація фур’є-перетворення в оптиці і в інтегральній оптиці зокрема
- 2. Теорія оптичного хвилеводу
- 2.2. Оптико-геометричний підхід до фізики плоского хвилеводу
- 2.2.1. Дисперсійне рівняння хвилеводу
- 2.2.3. Ефективна товщина хвилеводу
- 2.2.4. Довжина оптичного “зигзагу”
- 2.2.5. Кількість мод, які можуть розповсюджуватися у хвилеводі
- 2.2.6. Різниця між коефіцієнтами заломлення хвилеводу та оточуючих шарів.
- 2.3. Реальний хвилевід
- 2.4. Дисперсія у хвилевідній системі
- 2.4.1. Хроматична дисперсія
- 2.4.2. Модова дисперсія
- 2.5. Розповсюдження хвиль у градієнтному хвилеводі
- 3. Базові елементи інтегральної оптики. Пасивні елементи
- 3.1. Елементи введення-виведення (інтегрально-оптичні елементи зв’язку)
- 3.1.1. Призмовий елемент введення-виведення
- 3.1.2. Решітчастий елемент введення-виведення
- 3.2. Планарні оптичні елементи
- 3.2.1. Лінзи Люнеберга
- 3.2.2. Геодезична лінза
- 3.2.3. Дифракційні лінзи
- 4. Активні елементи інтегральної оптики
- 4.1. Електрооптичні пристрої
- 4.1.1. Модулятори-перемикачі на основі ефекту тунельної перекачуванни світла, або модулятори-перемикачі на зв’язаних хвилеводах
- 4.1.2. Модулятори-перемикачі інтерференційного типу
- 4.1.3. Електрооптичні модулятори на основі ефекту Брега
- 4.1.4. Електроабсорбційні модулятори
- 4.2. Акустооптичні модулятори
- 4.3. Магнітно-оптичні модулятори
- 4.4. Генерація світла в системах інтегральної оптики
- 5. Інтегральна оптика в приладах і пристроях
- 5.1. Датчики фізичних величин та пристрої на основі решітчастих елементів введення-виведення
- 5.1.1. Кутовимірювальні датчики
- 5.1.2. Хвилевідні фільтри на основі явищ аномального відбивання пропускання
- 5.2. Інтегрально-оптичні пристрої обробки інформаційних сигналів. Принципи оптичної хвилевідної обробки сигналів. Методи побудови оіс для інформаційної техніки
- 5.2.1. Типи та основні класи оіс для обробки інформації
- 5.2.2. Оіс для обробки сигналів
- 5.2.2.1. Інтегрально-оптичні спектроаналізатори високочастотних сигналів
- 5.2.2.2. Інтегрально-оптичні корелят ори
- 5.3. Аналого-цифрові перетворювачі. Чотири розрядний ацп
- 5.4. ОІс для обчислювальної техніки
- 5.4.2. Приклади побудови логічних елементів
- 6. Нейронні і нейроподібні мережі та їх оптична реалізація.
- 6.1. Структура нейронних мереж.
- 6.2.Алгоритм роботи нейронної мережі. Алгоритм Хопфілда
- 6.3. Перспективи розвитку оптичних нейронних мереж.
- 6.4. Реалізація оптичних нейронних мереж
- 6.4.1 Оптична нейронна мережа з процесорним ядром у вигляді безопорнрої голограми.
- 6.4.2. Оптична нейронна мережа з процесорним ядром у вигляді узгодженого фільтра.
- 6.4.3. Недоліки і переваги обох систем.
- 7. Оптичний зв’язок відкритими каналами
- 7.1. Розповсюдження світла через атмосферу
- 7.1.1. Молекулярне поглинання
- 7.1.2. Поглинання та розсіювання рідкими або твердими частинками
- 7.1.3. Атмосферна турбулентність
- 7.2. Макрохвилеводи
- Волоконно-оптичні лінії зв’язку. Пасивні та активні елементи восп
- 1. Фізичні характеристики оптичного волокна
- 1.1. Основні елементи оптичного волокна
- 1.2. Типи і характеристики оптичного волокна
- 1.2.1. Профілі показника заломлення
- 1.3. Властивості оптичних волокон як передаючого середовища
- 1.3.1. Поглинання в оптичних волокнах
- 1.3.2. Дисперсія
- 1.4. Геометричні параметри волокна
- 1.4.1. Відносна різниця показників заломлення ядра та оболонки
- 1.4.2. Числова апертура волокна
- 1.4.3. Нормована частота
- 1.4.4. Хвиля відсічки
- 1.4.5. Наближена оцінка міжмодової дисперсії багатомодового волокна
- 1.5. Характеристики оптичних волокон згідно з рекомендаціями itu-t
- 1.6. Нелінійні оптичні явища в одномодових волокнах
- 1.6.1. Фазова самомодуляція (фсм) та перехресна фазова модуляція (фкм)
- 1.6.2. Вимушене комбінаційне (Раманське) розсіяння вкр (srs) і розсіяння Мандельштама-Бриллюена врмб (sbs)
- 1.7. Одномодові волокна нових типів виробництва компаній lucent technologies cornigs.
- 2. Оптичні кабелі
- 2.1. Особливості конструкції оптичних кабелів
- 2.2. Монтаж оптичних кабелів
- 2.2.1. Аналіз втрат, які виникають у процесі монтажу оптичних кабелів зв’язку
- 2.2.2. Методи з’єднання оптичних волокон
- 2.2.3. Зварні з’єднання
- 2.2.4. Клейові з’єднання
- 2.2.4. Механічні з’єднувачі
- 2.2.5. Рознімні з’єднання
- 3. Пасивні оптичні елементи волз
- 3.1. Волоконно-оптичні відгалужувачі і розгалужувачі
- 3.1.1. Зварні відгалужувачі
- 3.1.2. Відгалужувачі із градієнтною циліндричною лінзою
- 3.1.3. Спектрально-селективні розгалужувачі (мультиплексори/демультиплексори)
- 3.2. Волоконно-оптичні перемикачі
- 3.2.1. Електромеханічні перемикачі
- 3.2.2. Термооптичні перемикачі
- 3.2.3. Електрооптичні перемикачі
- 3.2.4. Оптичні ізолятори
- 4. Активні елементи волз
- 4.1. Джерела випромінювання
- 4.1.1. Світлодіоди
- 4.1.2. Лазерні діоди (лд)
- 4.1.3. Фабрі-Перо-лазер
- 4.1.4. Лазери з розподіленим оберненим зв’язком (роз-лазери) і розподіленим брегівським відбиванням (рбв-лазери)
- 4.1.5. Лазерні діоди із зовнішнім резонатором
- 4.1.6. Найважливіші характеристики джерел випромінювання для волз
- 5.2. Складові елементи передавального оптоелектронного модуля
- 5. Приймальні оптоелектронні модулі. Ретранслятори, підсилювачі
- 5.1. Приймальні оптоелектронні модулі (пром)
- 5.1.1. Функціональний склад пром
- 5.1.3. Лавинні фотодіоди
- 5.1.4. Технічні характеристики фотоприймачів
- 5.2.5. Таймер
- 6. Повторювачі та оптичні підсилювачі
- 6.1. Типи ретрансляторів
- 6.1.1. Повторювачі
- 6.1.2. Оптичні підсилювачі
- 6.1.3. Підсилювачі Фабрі-Перо
- 6.1.4. Підсилювачі на волокні, які використовують бріллюенівське розсіювання
- 6.1.5. Підсилювачі на волокні, які використовують раманівське розсіювання
- 6.1.6. Напівпровідникові лазерні підсилювачі
- 6.2. Підсилювачі на домішковому волокні. Волоконно-оптичні підсилювачі
- 6.3. Інші характеристики ербієвих волоконних підсилювачів
- 6.4. Схеми накачування ербієвого волокна воп
- Список літератури до частини іі
- Волоконно-оптичні системи передавання
- 1. Сигнали та системи передавання інформації
- 1.1. Системи передавання цифрових сигналів
- 1.1.1. Основні поняття і термінологія
- 1.2. Структура систем зв’язку
- 1.3. Способи передавання сигналів
- 1.3.1. Послідовне і паралельне передавання сигналів
- 1.3.2. Синхронне та асинхронне передавання сигналів
- 1.3.3. Поелементне передавання сигналів
- 1.3.4. Передавання сигналів кодовими комбінаціями
- 1.4. Особливості каналів зв’язку
- 1.4.1. Особливості аналогових каналів зв’язку
- 1.4.2. Особливості цифрових каналів зв’язку
- 1.5. Параметри цифрової системи зв’язку
- 2. Волоконно-оптичні системи зв’язку
- 2.1. Структура волоконно-оптичної лінії зв’язку
- 2.2. Переваги використання оптичних волокон у системах зв’язку
- 3. Проектування (планування) волоконно- оптичної лінії зв’язку
- 3.1. Аналіз смуги пропускання волз
- 3.2. Втрати і обмеження в лініях зв’язку
- 4. Системи передавання інформації
- 4.1. Системи зв’язку плезіохронної цифрової цифрової ієрархії
- 4.1.1. Системи зв’язку для ліній зв’язку первинної цифрової ієрархії е1
- 4.1.2. Системи зв’язку для ліній зв’язку вторинної цифрової ієрархії е2
- 4.1.3. Системи зв’язку для ліній зв’язку третинної цифрової ієрархії е3
- 4.1.4. Системи зв’язку цифрової плезіохронної ієрархії е4
- 4.2. Системи і обладнання синхронної цифрової ієрархії
- 4.2.1. Синхронна цифрова ієрархія та мережі
- 4.2.2. Апаратура сці (sdh)
- 4.2.3. Апаратура sdh компанії Lucent technologies
- 4.2.4. Апаратура сці виробництва фірми siemens
- 5. Методи ущільнення інформаційних потоків
- 5.2. Метод часового ущільнення
- 5.3. Модове ущільнення
- 5.4. Ущільнення за поляризацією
- 5.6. Оптичне часове ущільнення (otdm)
- 5.7. Методи ущільнення каналів за полярністю
- Список літератури до частини ііі:
- 8. Мохунь і.І, Полянський п.В. Інтегральна оптика в інформаційній техніці. Конспект лекцій. – Чернівці, Рута, 2002, – 79 с.
- Задачі та практичні питання до курсів
- І. Інтегральна оптика в інформаційній техніці
- Іі. Волоконно-оптичні системи передавання.
- Додаток 1 Розрахунок регенераційної ділянки волз
- 1.3. Втрати потужності на з’єднаннях:
- 1.2. Втрати потужності на введення-виведення .
- 1.3. Втрати потужності на з’єднаннях:
- 2. Зберігання форми переданого сигналу, можливість відновлення його початкової форми.
- Перевід величини втрат з відсотків до дБ та навпаки