3.13.1. Технология создания программного кода
Процесс программирования кажется достаточно простой монотонной деятельностью до тех пор, пока задача управления, которую требуется реализовать, достаточно проста. Однако программисты с опытом знают, что большинство технических заданий удивительно быстро превращается достаточно сложный проект, часть задач которого разработчиком ранее не реализовывалась. Именно по этой причине необходимо правильно организовать исполнение проекта, даже если первоначальная задача кажется простой. Поэтому авторы настоятельно советуют читателю приобрести навыки системного подхода к написанию программ, независимо от языка программирования, на котором реализуется проект. Поскольку данная книга не претендует на системное изложение вопросов теории программирования, то наши советы по данной теме будут достаточно краткими.
При написании программы первым делом необходимо как можно более полно понять принцип действия и особенности работы того устройства, для которого программа предназначена. На основе этих знаний следует создать такую структуру программы, которая позволит удовлетворить как текущему техническому заданию, так и возможным будущим его дополнениям. На первых порах Вы можете начать самостоятельную работу, следуя рекомендациям главы 2. Вы уже умеете перейти от произвольного описания алгоритма управления к структуре функций управления и блок схемам алгоритмов. Рассмотренные в главе 2 методы структурного проектирования позволят Вам сначала увидеть задачу управления целиком, а затем произвести ее разбиение на отдельные блоки (подзадачи). Каждая такая подзадача должна быть оформлена в виде законченной подпрограммы или функции. Выделенные функции впоследствии будут объединены в один программный модуль, который должен быть отлажен и тестирован до того, как все другие составляющие модули программы будут объединены. Процессы написания, тестирования и отладки программ близко связаны. Вы никогда не должны сначала собрать полный текст программы, а затем начать ее отлаживать. Правильным подходом является написание, тестирование и отладка каждого программного модуля по отдельности перед тем, как эти модули будут объединены вместе. Процесс объединения должен использовать тот же подход: добавлять уже оттестированные модули к отлаженной части общей программы следует последовательно. И после добавления каждого нового модуля не лениться тестировать функционирование получившегося нового промежуточного программного продукта, в том числе убедиться в исполнении новых добавленных функциональных возможностей.
Напомнив Вам основные моменты структурного подхода к процессу написания исходного кода и его отладке, рассмотрим процесс превращения файла исходного кода на Си в файл исполняемого кода для определенного типа микроконтроллера. Мы рассмотрим эту технологию с использованием интегрированной среды разработки ICC12 версии 6.12B от компании ImageCraft. Если Вы используете программную среду разработки от другого производителя, то этот материал не будет для Вас бесполезным, поскольку принципы преобразования кодов в процессе создания исполняемого модуля прикладной программы одинаковы для всех аналогичных программных продуктов.
Рис. 3.1. Интерфейс пользователя интегрированной среды разработки ICC12
На рис. 3.1 представлен интерфейс пользователя (картинка на экране монитора), возникающая при запуске среды ICC12. Большое пустое окно в центре экрана предназначено для ввода и редактирования исходного текста программы на Си. Окно меньшего размера в правой части экрана — окно менеджера проектов. Оно предназначено для отображения списка всех используемых в текущем проекте файлов. Окно состояния в нижней части экрана предназначено для отображения текущей информации о режимах работы и состоянии обрабатываемых в среде файлов. В этом окне будут выводиться сообщения об ошибках, возникающих при работе программ компилятора, Ассемблера, линковщика и загрузчика/программатора в процессе обработки файлов текущего проекта. Теоретически, для ввода и редактирования файлов исходного текста программ могут быть использованы любые текстовые редакторы, однако программные продукты класса «интегрированная среда разработки» обязательно содержат собственный редактор текста, которым и следует воспользоваться. Пакет ICC12, как и любая другая интегрированная среда разработки, предоставляет программисту удобный интерфейс пользователя для работы с встроенными в среду программами компилятора, Ассемблера, линковщика, загрузчика и программатора. Каждая из программ может быть запущена на исполнение, как из контекстного меню, так и с помощью кнопок на панели управления. На рис. 3.2 показан интерфейс пользователя среды ICC12 с текстом программы в окне редактирования и сообщениями о результатах ее компиляции в окне состояния.
Рис. 3.2. Интерфейс пользователя интегрированной среды разработки ICC12
В окне редактирования загружен файл исходного текста программы на Си.
В окне состояния сообщение об успешной компиляции этого файла.
После того, как исходный текст программы написан и находится в окне редактирования, файл программы должен быть обработан препроцессором компилятора Си. Препроцессор – это часть программы компилятора, которая анализирует выражения в исходном тексте, которые начинаются с символа «#». Вспомните, с этого символа начинаются директивы подключения заголовочных файлов, директивы условной компиляции и директивы для объявления подпрограмм прерывания. Если препроцессор не зафиксировал синтаксических ошибок, то вступает в работу синтаксический анализатор и генератор ассемблерного текста компилятора Си. В результате, после обработки компилятором исходного текста программы на Си, будет получен текст исходной программы на языке Ассемблера для данного типа МК. В нашем случае это МК семейства 68HC12. Сгенерированный компилятором текст будет содержать как мнемоники команд ассемблера МК данного семейства, так и псевдокоманды и директивы для программы Ассемблер в составе пакета ICC12. Смысловые названия и шаблоны имен входных и выходных файлов компилятора Си для среды ICC12 приведены на рис. 3.3. Программы компиляторов, которые способны генерировать инструкции языка ассемблера для процессорного ядра, отличающегося (т.е. программно несовместимо) от ядра, на котором программа компилятора исполняется, называют кросс-компилятора ми. Так в нашем случае программа кросс-компилятора, исполняемая на персональном компьютере, генерирует ассемблерный текст для МК 68HC12.
Рис. 3.3. Последовательность работы программ в процессе генерации файла исполняемого кода прикладной программы
Исходный текст программы не обязательно должен быть написан на Си. Однако его написание на языке ассемблера для больших задач приводит к большому числу ошибок, что требует длительного процесса отладки. В проектах, которые связаны с программным обслуживанием быстропротекающих процессов, целесообразно наиболее критичные по времени исполнения фрагменты программы писать на ассемблере, в то время, как основную часть программы — на Си. Компиляторы Си допускают объединение этих двух языков в файле исходного текста программы.
Полученный после обработки программой компилятора файл прикладной программы далее обрабатывается программой Ассемблер. Эта программа преобразует файл программы в файл объектного кода с расширением «o» (см. рис. 3.3).
В соответствие с методом системного проектирования, разрабатываемая прикладная программа должна состоять из нескольких файлов, каждый из которых содержит отдельный модуль программы. Часть этих модулей может быть разработана и отлажена в составе другого проекта, и поэтому не требует повторной компиляции. В этом случае для создания конечного варианта разрабатываемой программы необходимо объединить в один файл ранее полученные объектные файлы модулей и вновь разработанные, прошедшие обработку компилятором и Ассемблером файлы. Для объединения нескольких объектных модулей в один файл исполняемого кода используется программа линковщика. Линковщик генерирует три типа файлов с расширениями «s19», «map» и «lst». Файл карты памяти «xxx.map» содержит в себе информацию о расположении кодов прикладной программы в адресном пространстве МК. Файл листинга «xxx.lst» отражает процесс перевода мнемоник команд ассемблера в машинные коды. Файл в формате «s19» именуют файлом исполняемого кода или загрузочным модулем, поскольку именно этот файл заносится в постоянную память МК и исполняется им в процессе управления проектируемым устройством. Таким образом, в результате работы специальных программ в составе пакета интегрированной среды разработки, один или несколько файлов на Си были обработаны программами компилятора, Ассемблера и линковщика с целью получения одного исполняемого на выбранном типе МК файла машинных кодов прикладной программы.
Процесс разбиения задачи для программирования на множество программных модулей, каждый из которых функционально завершен и предназначен для реализации отдельной функции управления, называется структурным программированием. Для объединения отдельных программных модулей в одну программу управления с возможностью независимой модификации и отладки каждого модуля недостаточно располагать только исходными текстами или объектными файлами этих модулей. Необходим также достаточно большой набор служебных файлов, которые вместе с файлами модулей составляют так называемый проект задачи. Поэтому программа в составе интегрированной среды разработки, которая осуществляет управление процессом компиляции, ассемблирования, объединения модулей программой линковщика и загружает полученный исполняемый код в память микроконтроллера на отладочной плате, называется менеджером проектов (Project Manager или Project Builder). Это еще одна программа в составе пакета интегрированной среды разработки типа ICC12.
Программа менеджера проектов считается основной в составе IDE, поскольку она управляет доступом пользователя и взаимодействием с обрабатываемыми файлами всех остальных программ пакета интегрированной среды разработки и отладки программного обеспечения (ПО) микропроцессорных систем. Кроме используемого в книге пакета ICC12, для создания прикладного ПО микроконтроллеров семейства 68HC12 могут также использоваться другие аналогичные пакеты, например CodeWarrior компании Metrowerks.
В параграфе 3.14 на примере простой программы управления светодиодами мы рассмотрим особенности генерации всех промежуточных файлов при работе комплекта программ в составе интегрированной среды ICC12. В настоящем параграфе на рис. 3.4 мы демонстрируем лишь смысловые преобразования исходного текста на Си в процессе получения исполняемого кода прикладной программы.
Рис. 3.4. Форматы представления прикладной программы на разных этапах создания файла исполняемого кода
- Встраиваемые системы Проектирование приложений на микроконтроллерах семейства 68hc12/hcs12 с применением языка с с. Ф. Баррет
- Предисловие
- Структура книги
- Учебные системы
- Целевая аудитория
- Благодарности
- Глава 1 первое знакомство со встраиваемыми системами
- 1.1. Что такое встраиваемая система?
- 1.2. Особенности встраиваемых систем
- 1.2.1. Работа в реальном времени
- 1.2.2. Миниатюризация размеров и процесс тестирования
- 1.2.3. Минимизация энергии потребления
- 1.2.4. Интерфейс пользователя и интерфейс сопряжения с объектом
- 1.2.5. Многозадачность
- 1.2.6. Минимизация стоимости
- 1.2.7. Ограничение объема памяти
- 1.2.8. Программно–аппаратный дуализм
- 1.3. Введение в микроконтроллеры семейства 68hc12 и hcs12
- 1.4 Микроконтроллеры hcs12
- 1.4.1. Семейство hcs12
- 1.4.2. Обозначения мк
- 1.4.3. Модельный ряд hcs12
- 1.5. Заключение по главе 1
- 1.6. Вопросы и задания Основные
- Более сложные
- Исследовательские
- Глава 2 программирование встраиваемых систем и структурное проектирование
- 2.1. Почему мы программируем микроконтроллеры на Си?
- 2.2. Преимущества программирования на языке ассемблер
- 2.3. Преимущества языков высокого уровня
- 2.3.1. Выбираем язык высокого уровня для программирования встраиваемых систем
- 2.3.2. Краткая история языка Си
- 2.4. Оптимальная стратегия — программирование на Си и на ассемблере
- 2.5. Структурное проектирование
- 2.5.1. Основные положения метода структурного проектирования
- 2.5.2. Документирование программ
- 2.5.3. Как язык Си соотносится со структурным проектированием
- 2.6. Рабочие тетради
- 2.6.1. Порядок ведения записей
- 2.6.2. Содержание записей
- 2.7. Блок схемы алгоритмов
- 2.8. Пример применения
- 2.9. Заключение по главе 2
- 2.10 Что еще почитать?
- 2.11 Вопросы и задания Основные
- Более сложные
- Исследовательские
- Глава 3 основы программирования микроконтроллеров на си
- 3.1. Введение в программирование на Си
- 3.1.1. Глобальные и локальные переменные
- 3.2. Типы данных в Си
- 3.3. Операторы языка Си
- 3.4. Функции
- 3.4.1. Что такое функция?
- 3.4.2. Основная программа
- 3.4.3. Прототипы функций
- 3.4.4. Описание функций
- 3.4.5. Вызов функций, передача параметров, возврат полученных значений
- 3.5. Файлы заголовков
- 3.6. Директивы компилятора
- 3.6.1. Директивы условной компиляции
- 3.7. Конструкции программирования
- 3.8. Операторы для организации программных циклов
- 3.8.1. Оператор for
- 3.8.2. Оператор while
- 3.8.3. Оператор do-while
- 3.9. Операторы принятия решения
- 3.9.1. Оператор if
- 3.9.2. Оператор if-else
- 3.9.3. Оператор if-else if-else
- 3.9.4. Оператор switch
- 3.10. Массивы
- 3.11. Указатели
- 3.12. Структуры
- 3.13. Процесс программирования и отладки микропроцессорной системы
- 3.13.1. Технология создания программного кода
- 3.13.2. Режим отладки bdm
- 3.13.3. Аппаратные и программные средства отладчика p&e от компании pemicro
- 3.13.4. Эмуляторы
- 3.13.5. Логические анализаторы
- 3.14. Особенности компилятора и ассемблера
- 3.15. Заключение по главе 3
- 3.16. Что еще почитать?
- 3.17. Вопросы и задания Основные
- Более сложные
- Исследовательские
- Глава 4 микроконтроллеры 68hc12 и hcs12: архитектура и программирование
- 4.1. Аппаратные средства микроконтроллеров семейства 68hc12
- 4.2. Аппаратные средства мк семейства hcs12
- 4.3. Режимы работы мк семейства 68hc12/hcs12
- 4.3.1. Рабочие режимы
- 4.3.2. Режимы работы отладочной платы m68evb912b32
- 4.4. Назначение выводов мк
- 4.5. Регистры специальных функций мк
- 4.5.1. Виртуальный адрес блока регистров
- 4.6. Порты ввода/вывода
- 4.6.1. Спецификация портов ввода/вывода
- Регистры управления портами
- Вопросы для самопроверки
- Пример применения
- 4.7. Подсистема памяти мк b32
- Пример применения
- 4.7.1. Карта памяти мк b32
- 4.7.2. Изменение адресов в карте памяти мк
- 4.8. Подсистема памяти мк dp256
- Вопросы для самопроверки
- 4.9. Состояния сброса и прерывания мк
- 4.9.1. Реакция мк на внешние события
- 4.10. Состояния сброса и прерывания в мк 68hc12
- 4.10.1. Состояние сброса мк
- Регистры сторожевого таймера и монитора тактирования
- 4.10.2. Прерывания
- Немаскируемые прерывания
- Маскируемые прерывания
- Вопросы для самопроверки
- 3. Каково различие между прерываниями по входам
- 4. Как организовать подсистему прерывания с несколькими внешними запросами для мк семейства 68hc12/hcs12, используя лишь один вход внешнего прерывания
- 4.10.3. Вектора исключений
- 4.10.4. Система приоритетов для исключений
- 1. Внешний сброс по входу
- 5. Немаскируемое прерывание по входу
- Вопросы для самопроверки
- 4. Какие действия должен предпринять программист, чтобы после начального запуска мк присвоить входу
- 4.10.5. Регистры подсистемы прерывания
- 4.11. Процесс перехода к подпрограмме прерывания
- Вопросы для самопроверки
- 4.12. Оформление подпрограммы прерывания на Си
- 4.13. Система тактирования
- 4.13.1.Система тактирования отладочной платы mc68hc912b32evb
- 4.14. Подсистема реального времени — модуль таймера
- 4.14.1. Структура модуля таймера
- 4.14.2. Счетчик временной базы
- Особенности счетчика временной базы
- Флаг переполнения счетчика
- Определение длительности временных интервалов
- Сброс счетчика временной базы
- Вопросы для самопроверки
- 4.14.3. Регистры для управления счетчиком временной базы
- Регистр управления модулем таймера
- Регистр счетчика временной базы
- Регистр масок таймера 2
- 4.14.4. Каналы захвата/сравнения
- Режим входного захвата
- Вопросы для самопроверки
- Режим выходного сравнения
- Канал 7 в режиме выходного сравнения
- Регистры для управления каналами захвата/сравнения
- Регистры управления таймером 3 и 4
- Регистр масок таймера 1
- Регистр масок таймера 2
- Регистр флагов таймера 1
- Регистр флагов таймера 2
- Регистры данных каналов захвата/сравнения
- Вопросы для самопроверки
- Примеры работы с таймером
- Измерение частоты и периода логического сигнала
- Генерация импульсной последовательности
- Генерация импульсной последовательности с использованием прерывания
- 4.14.5. Счетчик событий
- Режимы работы счетчика
- Регистры управления счетчиком событий
- Регистр управления счетчиком событий
- Регистр флагов счетчика событий
- Регистр текущего состояния счетчика событий
- Пример использования счетчика событий
- 4.15. Модуль меток реального времени
- Пример использования модуля меток реального времени
- 4.16. Модуль таймера ect в составе мк мc68hc12be32 и hcs12
- 4.16.1. Небуферированные каналы входного захвата
- 4.16.2. Буферированные каналы входного захвата
- 4.16.3. Особенности счетчиков событий
- 4.16.4. Регистры управления модуля est
- Регистр управления порядком перезаписи
- Регистр управления режимом входного захвата
- Регистр управления счетчиком задержки
- Регистр управления 16-разрядным вычитающим счетчиком
- Регистр коэффициента счета вычитающего счетчика
- Регистр флагов вычитающего счетчика
- 4.17. Обмен информацией в последовательном коде: многофункциональный последовательный интерфейс
- 4.17.1. Термины последовательного обмена
- Вопросы для самопроверки
- 4.18. Контроллер асинхронного обмена sci
- Вопросы для самопроверки
- 4.18.1. Передатчик контроллера sci
- 4.18.2. Приемник контроллера sci
- 4.18.3. Регистры контроллера sci
- Регистры скорости обмена sCxBdh и sCxBdl
- Регистры управления sCxCr1 и sCxCr2
- Регистры состояния sCxSr1 и sCxSr2
- Регистры данных sCxDrh и sCxDrl
- Вопросы для самопроверки
- 4.18.4. Алгоритмы программного обслуживания контроллера sci
- 4.18.5. Пример программирования контроллера sci
- 4.19. Синхронный последовательный интерфейс spi
- 4.19.1 Концепция интерфейса spiФункциональная схема обмена между двумя контроллерами spi
- 4.19.2. Алгоритмы работы контроллера spi
- Вопросы для самопроверки
- 4.19.3. Регистры контроллера spi
- Регистр скорости обмена sPxBr
- Регистры управления sPxCr1 и sPxCr2
- Регистр данных spCxDr
- Регистр данных порта s
- Регистр направления передачи порта s
- Вопросы для самопроверки
- 4.19.4. Алгоритмы программного обслуживания контроллера spi
- 4.19.5 Периферийные ис с интерфейсом spi
- 4.20. Введение в теорию аналого-цифрового преобразования
- 4.20.1. Частота дискретизации сигнала
- 4.20.2. Представление аналоговой величины в цифровом коде
- 4.20.3.Квантование по уровню и разрешающая способность
- 4.20.4 Скорость потока данных оцифровки
- Вопросы для самопроверки
- 4.21. Принцип действия ацп
- 4.21.1. Ацп последовательного приближения
- Вопросы для самопроверки
- 4.22. Подсистема аналого-цифрового преобразования мк 68hc12
- 4.22.1 Структура и порядок функционирования
- 4.22.2. Регистры управления модуля atd
- Группа регистров управления
- Регистры управления atdctl0 и atdctl1
- Регистр управления atdctl2
- Регистр управления atdctl3
- Регистр управления atdctl4Формат регистра atdctl4
- Регистр управления atdctl5
- Вопросы для самопроверки
- Регистр состояния atdstat
- Регистр данных порта portad
- Регистры результата adr0h…adr7h
- Вопросы для самопроверки
- Тестовый регистр atdtest
- 4.22.3. Пример программирования модуля atd
- Цифровой вольтметр
- 4.22.4. Обслуживание прерываний от модуля atd
- 4.23. Особенности модуля atd в составе мк семейства hcs12
- 4.23.1. Выбор разрядности ацп
- 4.23.2. Представление результата измерения
- 4.23.3. Запуск измерительной последовательности от внешнего сигнала
- 4.23.4. Программируемое число преобразований в измерительной последовательности
- 4.23.5. Увеличение числа аналоговых входов
- 4.23.6. Регистры модуля atd hcs12
- Регистр состояния atdstat0
- Регистр состояния atdstat1
- Регистр разрешения цифрового входа порта atddien
- 4.24. Подсистема широтно-импульсной модуляции
- 4.24.1. Структура модуля pwm
- 4.24.2. Режимы центрированной и фронтовой шим
- 4.24.3. Система тактирования
- 4.24.4. Регистры модуля pwm
- Регистр конфигурации pwclk
- Регистр конфигурации pwpol
- Регистр разрешения работы каналов pwen
- Регистр дополнительного делителя pwpres
- Регистры делителей pwscnt0/pwscnt1 и pwscal0/pwscal0
- Регистры счетчика каналов pwcnTx
- Регистры периода каналов pwpeRx
- Регистры коэффициента заполнения каналов pwdtYxФормат регистров коэффициента заполнения pwdtYx
- Регистры коэффициента заполнения каналов pwdtYx
- Регистр управления pwctl
- Регистр специальных режимов pwtst
- Регистры работы с портом p
- 4.24.5. Примеры программирования модуля pwm
- Инициализация модуля pwm, пример 1
- Инициализация модуля pwm, пример 2
- 4.25. Ограничение энергии потребления
- 4.25.1. Как остановить мк 68hc12
- 4.25.2. Как вывести мк 68hc12 из состояния пониженного энергопотребления
- 4.26. Советы по использованию платы отладки mc68evb912b32
- 4.27. Заключение по главе 4
- 4.28. Что еще почитать?
- 4.29. Вопросы и задания Основные
- Исследовательские
- Глава 5 основы сопряжения мк с устройствами ввода/вывода
- 5.1. Электрические характеристики мк 68hc12
- 5.1.1. Нагрузочные характеристики
- 5.1.2. Что произойдет, если Вы должным образом не учтете электрические характеристики периферийных ис?
- 5.1.3. Входные и выходные характеристики логических элементов
- 5.2. Устройства дискретного ввода: кнопки, переключатели, клавиатуры
- 5.2.1. Кнопки и переключатели
- 5.2.2. Dip переключатели
- 5.2.3. Клавиатуры
- 5.3. Устройства индикации: светодиоды, семисегментные индикаторы, индикаторы логического выхода с тремя состояниями
- 5.3.1. Светодиоды
- 5.3.2. Семисегментные индикаторы
- 5.3.3. Индикаторы для логического выхода с тремя состояниями
- 5.4. Программное обслуживание дискретных входов и выходов
- 5.5. Подавление механического дребезга контактов переключателей
- 5.5.1. Аппаратная защита от механического дребезга контактов
- 5.5.2. Программная защита от механического дребезга контактов
- 5.5.3. Пример программной защиты
- 5.6. Жидкокристаллические индикаторы
- 5.6.1. Краткие сведения о жидкокристаллических индикаторах
- 5.6.2. Сопряжение мк с символьным жк индикатором
- 5.6.3 Сопряжение мк с графическим жк дисплеем
- 5.7. Управление электрическим двигателем
- 5.7.1. Силовые полупроводниковые ключи
- 5.7.2. Оптоэлектронная потенциальная развязка
- 5.7.3. Инвертор напряжения
- 5.8. Кодовый замок
- 5.8.1. Схема подключения периферийных устройств
- 5.8.2. Программа управления
- 5.9. Интерфейс мк с аналоговыми датчиками
- 5.10. Интерфейс rs-232
- 5.11. Заключение по главе 5
- 5.12. Что еще почитать?
- 5.13. Вопросы и задания Основные
- Более сложные
- Исследовательские
- Глава 6 добро пожаловать в реальный мир!
- 6.1. Ужасные истории об ошибках проектирования
- 6.1.1. Случай квадратичного генератора
- 6.1.2. Случай таймера для лазерного излучения
- 6.2. Правила обращения с микросхемой 68нс12 и рекомендации по проектированию
- 6.2.1. Рекомендации по обращению со cmos
- 6.2.2. Рекомендации по проектированию на cmos
- 6.3. Исследование помех
- 6.3.1. Что такое помехи
- 6.3.2. Электромагнитная совместимость
- 6.3.3. Спецификации системы помех — не будем крепки задним умом!
- 6.3.4. Методы снижения помех
- 6.4. Защитное программирование
- 6.5. Методики испытаний на наличие помех
- 6.5.1. Обнаружение помех
- 6.5.2. Испытание на чувствительность к помехам
- 6.5.3. Испытания на электромагнитную совместимость
- 6.6. Управление энергопотреблением
- 6.6.1. Параметры потребляемой мощности для микроконтроллера 68hc12
- 6.6.2. Типы батарей
- 6.6.3. Емкость батарей
- 6.6.4. Стабилизация напряжения
- 6.6.5. Схемы супервизора для микропроцессора
- 6.6.6. Меры энергосбережения
- 6.7. Заключение по главе 6
- 6.8. Что еще прочитать?
- 6.9. Вопросы и задания Основные
- Более сложные
- Исследовательские
- Глава 7 примеры встроенных систем управления
- 7.1. Система привода робота, движущегося вдоль стенок лабиринта
- 7.1.1. Описание проекта
- 7.1.2. Подсистемы 68hc12, используемые в проекте
- 7.1.3. Компоненты системы
- 7.1.4. Структура программы и блок-схема алгоритма
- 7.1.5. Программный код
- 7.2. Лазерный проектор
- 7.2.1. Описание проекта
- 7.2.2. Подсистемы 68hc12 используемые в проекте
- 7.2.3. Описание некоторых компонентов системы
- 7.2.4. Аппаратные средства
- 7.2.5. Структура программы и блок-схема алгоритма
- 7.2.6. Программный код
- 7.2.7. Испытания устройства
- 7.2.8. Заключительные испытания системы управления
- 7.3. Цифровой вольтметр
- 7.3.1. Описание проекта
- 7.3.2. Системы 68hc12 используемые в проекте
- 7.3.3. Расчет интерфейса модуля atd
- 7.3.4. Структура программы и блок-схема алгоритма
- 7.3.5. Программа управления
- 7.3.6. Измерение неэлектрических величин
- 7.4. Стабилизация скорости вращения двигателя с использованием оптического тахометра
- 7.4.1. Описание проекта
- 7.4.2. Немного теории
- 7.4.3. Анализ
- 7.4.4. Структура программы и блок-схема алгоритма
- 7.4.5. Программный код
- 7.4.6. Испытания
- 7.5. Парящий робот
- 7.5.1. Описание проекта
- 7.5.2. Системы hcs12 используемые в проекте
- 7.5.3. Теоретическое обсуждение
- 7.5.4. Структура программы и блок-схема алгоритма
- 7.5.5. Программный код
- 7.5.6. Некоторые комментарии
- 7.6. Система защиты компьютера, основанная на нечеткой логике
- 7.6.1. Описание проекта
- 7.6.2. Использование системы hcs12
- 7.6.3. Основы теории
- 7.6.4. Структура программы и блок-схема алгоритма
- 7.6.5. Описание системы
- 7.6.6. Обсуждение проекта
- 7.6.7. Программный код
- 7.6.8. Некоторые комментарии
- 7.7. Электронная версия игры в «15»
- 7.7.1. Описание проекта
- 7.7.2. Системы hcs12 используемые в проекте
- 7.7.3. Основы теории
- 7.7.4. Схемное решение, структура программы и блок-схема алгоритма
- 7.7.5. О компонентах системы
- 7.7.6. Программный код
- 7.7.7. Некоторые комментарии
- 7.8. Программирование резидентного Flash пзу микроконтроллера b32 в составе платы отладки mc68hc912b32evb
- 7.9. Заключение по главе 7
- 7.10. Что еще прочитать?
- 7.11. Вопросы и задания Основные
- Более сложные
- Исследовательские
- Глава 8 операционные системы реального времени
- 8.1. Рассказ: официант — «живая» операционная система реального времени
- 8.2. Что является целью осрв?
- Вопросы для самопроверки
- 8.3. Обзор концепций
- 8.3.1. Требования к динамическому распределению ram
- Вопросы для самопроверки
- 8.3.2. Динамическое распределение памяти
- 8.3.3. Структуры данных
- 8.4. Основные понятия
- 8.4.1. Что такое задача?
- 8.4.2. Управление задачами
- 8.4.3. Компоненты многозадачных систем
- 8.5. Типы операционных систем реального времени
- 8.5.1. Системы с циклическим опросом
- 8.5.2. Циклический опрос с прерываниями
- 8.5.3. Карусельные системы
- 8.5.4. Смешанные системы
- 8.5.5. Системы с управлением по прерыванию
- 8.5.6. Кооперативная многозадачность
- 8.5.7. Многозадачные системы с преимущественным приоритетом
- 8.6. Проблемы осрв
- 8.6.1. Конкуренция Другой рассказ
- 8.6.2. Повторная входимость
- 8.6.3. Межзадачные связи
- 8.6.4. Безопасность, проверка и безотказная работа
- 8.6.5. Главный вопрос
- 8.7. Выполнение операционной системы реального времени
- 8.8. Пример применения: осрв циклического опроса
- 8.8.1. Краткий обзор проекта
- 8.8.2. Пример кода
- 8.8.3. Испытание контроллера усилителя
- 8.9. Другая прикладная программа: цикл опроса с прерываниями
- 8.10. Сложное прикладное устройство: имитатор осрв
- 8.10.1. Краткий обзор проекта
- 8.10.2. Типовой код
- 8.11.Заключение по главе 8
- 8.12. Что еще почитать?
- 8.13. Вопросы и задания Основные
- Более сложные
- Исследовательские
- Глава 9 распределенные сети с интерфейсом msCan
- 9.1. Компьютерные сети
- 9.2. Промышленные сети
- 9.3. Сети с протоколом can
- 9.3.1. Протокол can
- 9.3.2. Модуль контроллера последовательного обмена msCan12
- Подсистема прерывания контроллера msCan12.
- 9.3.3. Проблемы синхронизации
- 9.3.4. Конфигурирование модуля msCan12 для работы в сети
- 9.4. Различия между контроллерами msCan в составе 68hc12 и hcs12
- 9.5. Пример программирования контроллера msCan Схема включения аппаратных средств для двух отладочных плат Axiom
- 9.6. Контроллер последовательного обмена bdlc
- 9.7. Заключение по главе 9
- 9.8. Что еще почитать?
- 9.9. Вопросы и задания Основные
- Более сложные
- Исследовательские