7.4.2. Немного теории
В этом разделе мы более подробно исследуем некоторые из концепций, связанных с проектом, рассмотрев требования к двигателю, работу оптического кодера и конфигурирование прерываний в режиме реального времени на языке Си, а также программу на Си для подсчета импульсов с помощью подсистемы аккумулятора импульсов.
Требования к двигателю. Специфический двигатель, который мы используем — это двигатель постоянного тока, выпускаемый компанией Electro-Craft Corporation. Мы уже рассмотрели основные характеристики двигателя. Однако, имеется ряд дополнительных характеристик, которые требуются для этого проекта, таких, например, как зависимость скорости двигателя от его тока. Так как они не приводятся в информационных данных, мы получим их экспериментально. Будем изменять питающее напряжение, поданное на двигатель, и соответствующую этому напряжению скорость. Для этого подключим частотомер на выход оптического кодера, чтобы определить частоту следования импульсов при заданном питающем напряжении двигателя, и затем вычислим скорость вращения. Одновременно будем измерять также токи двигателя. Результаты эксперимента показаны на рис. 7.17.
Рис. 7.17. Результаты испытаний двигателя
Оптический кодер. Существует широкое разнообразие оптических кодеров для определения скорости вращения вала двигателя. Эти кодеры закрепляются непосредственно на валу, или могут быть связаны с валом какими-либо устройствами. При установке кодера на вращающийся вал, это устройство обеспечивает на выходе прямоугольное напряжение. Кодеры питаются от постоянного напряжения 5 В, и рассчитаны на максимальную скорость вращения в 12 000 об/мин. Мы используем оптические кодеры, чтобы обеспечить измерение скорости вращения двигателя, как описано в [11]. Установка для измерения частоты вращения показана на рис. 7.18.
Рис. 7.18. Установка для измерения скорости вращения двигателя
Прерывания в режиме реального времени. Мы используем в МК 68HC12 модуль меток реального времени (RTI), периодически прерывая работу 68HC12, чтобы измерить скорость двигателя и скорректировать коэффициент заполнения ШИМ, если это необходимо для стабилизации скорости вращения двигателя. Перед обсуждением программного кода для управления RTI, мы советуем Вам, возобновить в памяти информацию о сбросах и прерываниях. Ниже приведен краткий обзор действий, необходимых, чтобы инициализировать прерывание RTI:
• Инициализируют вектор прерывания по запросу RTI;
• Устанавливают масштабирующий коэффициент RTR[2:0];
• Устанавливают флаг RTIE разрешения прерываний от RTI в регистре RTICTL;
• Очищают флаг RTIF в регистре RTIFLG;
• Разрешают все маскируемые прерывания прерывания (команда CLI).
Приведенные ниже программный код поможет Вам ознакомиться с работой RTI. В этом примере, мы переходим к программе ISR обработки прерывания RTI, переключая флаг порта PORTP. Если вы исследуете возникающую в результате форму сигнала, показанного на рис. 7.19, с помощью осциллографа или логического анализатора, то сможете измерить период повторения системы RTI прерываний.
Рис. 7.19. Прерывания в режиме реального времени
//********************************************************************
//имя файла: RTI_test.с//
//Port P[0]: Конфигурируется как цифровой выходной порт, обеспечивающий TTL
// совместимые сигналы для управления затвором.
// авторы: Стив Барретт и Даниель Пак
//дата создания: Mar 10, 2003
//последняя редакция: Mar 10, 2004
//********************************************************************
#include <912b32.h>
#pragma interrupt_handler RTI_isr
//Функции-прототипы
//***************************************************
void initialize_ports(void); //инициализация портов
void RTI_isr(void);
void initialize_RTI(void);
//main program* *******************************************************
void main(void) {
//инициализация вектора сброса для B32
asm(".area vectors(abs)\n"
" .org 0xFFF0\n" // инициализация вектора прерывания RTI
" .word _RTI_isr\n"
" .org 0xFFF8\n" // инициализация вектора сброса для B32
" .word 0x8000, 0x8000, 0x8000, 0x8000\n"
" .text");
initialize_RTI(); //инициализация модуля RTI
initialize_ports(); //инициализация портов
PORTP = 0x01; // разрешение PORTP вывод 0
asm("cli"); //разрешение всех маскируемых прерываний
.
.
.
}
//********************************************************************
// определения функций
// ********************************************************************
//Initialize_ports: начальная конфигурация
//для портов входа/выхода
// ********************************************************************
void initialize_ports(void) {
DDRP=0xFF; //порт PORTP устанавливается как выходной
}
// ********************************************************************
//RTI_isr: подпрограмма обслуживания прерываний по RTI
//*********************************************************************
void RTI_isr(void) {
RTIFLG = 0x80; //сбрасывается флаг RTIF
PORTP =~(PORTP); //переключить выходы PORTP
}
// ********************************************************************
// ********************************************************************
//initialize_RTI:конфигурирует модуль RTI
// ********************************************************************
void initialize_RTI(void) {
RTICTL = 0x86; // устанавливается таймер RTI
RTIFLG = 0x80; //сбрасывается флаг RTIF
}
// ********************************************************************
Аккумулятор импульсов. Число импульсов, поступающих от оптического кодера, подсчитывается аккумулятором импульсов (PA). Он инициализируется в начале программы и затем фиксирует текущее число импульсов за интервал каждого прерывания RTI. По известному интервалу времени между прерываниями RTI (32.768 мс) можно определить число импульсов, поступивших на PA между двумя прерываниями, и затем вывести на дисплей скорость вращения двигателя. Для конфигурации PA системы существует специальный код.
// **********************************************************************
//initialize_PA: инициализация модуля аккумулятора импульсов МК 68HC12
// **********************************************************************
void initialize_PA(void) {
TIOS = 0x00; //Конфигурировать канал 7 для работы счетчика импульсов
TCTL1 = 0x00; //кодера - 3 оператора
OC7M = 0x00;
TSCR = 0x80; //Установить бит разрешения таймера
PACTL = 0x70; //Разрешить работу PA, режим счета событий, событие
// по фронту импульса,
}
Объединим теперь эту программу с программой для RTI, чтобы подсчитать число импульсов кодера, появившихся за интервал прерывания. Получив, этот результат, преобразуем его в число об/мин и выведем полученное значение на ЖК индикатор.
// **********************************************************************
//имя файла: motor.с
//автор: Steve Barrett and Daniel Pack
//дата создания: Mar 10, 2003
//последняя редакция: Mar 25, 2004
// **********************************************************************
// включенные файлы *****************************************************
#include <912b32.h>
#pragma interrupt_handler RTI_isr //объявить подпрограмму прерывания по RTI
// функции-прототипы ****************************************************
void initialize_ports(void); //инициализировать порты
void RTI_isr(void); //подпрограмма обслуживания прерываний RTI
void initialize_RTI(void); // инициализировать систему RTI
void initialize_PA(void); //инициализировать аккумулятор импульсов (PA)
void initialize_LCD(void); // инициализировать ЖК индикатор
void display_count_LCD(unsigned int); //вывод текущего содержимого аккумулятора PA
// на ЖК индикатор
void putchars(unsigned char); //функция поддержки ЖКИ - вывести символ
void putcommands(unsigned char);// функция поддержки ЖКИ вывести команду
void delay_5ms(void); //задержка 5 мс
void delay_100us(void); //задержка 100 мкс
unsigned int old_count; //последнее значение, записанное в (PA)
int RTI_int_count =0; //используется для подсчета RTI прерываний
//главная программа****************************************************
void main(void) {
asm(" .area vectors(abs) \n" //inline assembly statement
".org 0xFFF0\n" //инициализация вектора прерываний RTI
".word _RTI_isr\n"
" .org 0xFFF8\n" // инициализация вектора reset для 68HC12 B32
" .word 0x8000, 0x8000, 0x8000, 0x8000\n"
" .text");
void initialize_ports(void); // инициализация портов
initialize_LCD(); //инициализация ЖКИ
initialize_RTI(); //инициализация модуля RTI
initialize_PA(); //инициализация аккумулятора импульсов
asm("cli"); //разрешение глобального маскирования
//прерываний
while(1) //продолжение цикла до следующего прерывания
{
;
}
}
//********************************************************************
//********************************************************************
//initialize_ports: определяет направление передачи портов
//********************************************************************
void initialize_ports(void) {
DDRP = 0xFF; // порт PORTP устанавливается как выходной для ШИМ
DDRT = 0x00; // PORTT устанавливается как входной, вывод PORTT[7]
// в качестве входа аккумулятора импульсов PA
DDRB = 0xFF; // PORTB устанавливается как выходной - порт
// данных для ЖКД
DDRDLC = 0xFF; // PORT DLC устанавливается как выходной - сигналы
// управления для ЖКИ
}
//********************************************************************
//RTI_isr: подпрограмма прерывания по RTI
//********************************************************************
void RTI_isr(void) {
unsigned int new_count;
unsigned int pulse_count;
float max_count = 65535.0;
new_count = PACNT; //передается текущее число импульсов, записанное в PA
if (new_count > old_count) //определяется приращение числа импульсов
pulse_count = new_count - old_count;
else pulse_count = (unsigned int)(max_count-(float)(old_count = new_count));
RTI_int_count = RTI_int_count + 1;// изменяется показание счетчика
//RTI-прерываний
if (RTI_int_count == 10) // изменяется показание ЖКД через
// каждые 10 прерываний
{
display_count_LCD(pulse_count); //изменяется ЖКИ
RTI_int_count = 0; //сбрасывается счетчик прерываний RTI
}
old_count = new_count;
RTIFLG = 0x80; //сбрасывается RTI
}
// ********************************************************************
// initialize_RTI:конфигурирует регистры, связанные с RTI
// - регистр RTICTL
// -- разрешает работу модуля RTI установкой бита RTIE
// -- период RTI в 32.768 мс
// - сбрасывает бит RTIF в регистре флагов (RTIFLG)
// ********************************************************************
void initialize_RTI(void) {
RTICTL = 0x86; // устанавливается период RTI на 32.768 мс
RTIFLG = 0x80; //сбрасывается флаг RTIF
}
// ********************************************************************
//initialize_PA: инициализация модуля аккумулятора импульсов
// ********************************************************************
void initialize_PA(void) {
TIOS = 0x00; // Конфигурирует канал 7 для работы
TCTL1 = 0x00; // счетчика импульсов оптического кодера
OC7M = 0x00;
TSCR = 0x80; // устанавливает бит разрешения работы таймера
PACTL = 0x70; // разрешает работу РА, режим счета событий,
// по фронту импульса,
}
/********************************************************************/
/* initialize_LCD: инициализации ЖКИ */
/* передает на ЖКИ стартовую последовательность команд управления */
/* - PORTDLC[3]: линия управления RS ЖКИ */
/* - PORTDLC[2]: линия управления E для ЖКИ */
/* - PORTB: двунаправленная магистраль данных для ЖКИ */
/********************************************************************/
void initialize_LCD(void) {
delay_5ms();
delay_5ms();
delay_5ms(); /*ожидание в течение 15 мс перед включением ЖКИ */
putcommands(0x38); /*разрядность данных интерфейса 8 бит */
delay_5ms(); /*задержка */
putcommands(0x38); /*интерфейс в 8 бит */
delay_100us(); /*задержка */
putcommands(0x38); /* разрядность данных интерфейса 8 бит */
putcommands(0x38); /* интерфейс в 8 бит */
putcommands(0x0C); /*включение дисплея */
putcommands(0x01); /*очистка дисплея */
putcommands(0x06); /*установка режима инкремента адреса */
putcommands(0x00);
putcommands(0x00);
putcommands(0xC0); /*курсор на линию 2 знакоместо 1 */
putchars('R'); /* вывести "PRM" - скорость */
/*в об/мин на строку 2 ЖКИ */
putchars('P');
putchars('M');
}
/********************************************************************/
/*putchars: функция посылает ASCII код для вывода на ЖКИ */
/********************************************************************/
void putchars(unsigned char c) {
PORTB = c; /*вывести на порт PORTB код символа */
PORTDLC = PORTDLC|0x08; /*установить RS в 1 для передачи данных */
PORTDLC = PORTDLC|0x04; /*установить E в 1 */
PORTDLC = 0x00; /* установить E и RS в 0 */
delay_100us(); delay_100us();
}
/********************************************************************/
/*putcommands: функция посылает команду управления ЖКИ */
/********************************************************************/
void putcommands(unsigned char d) {
PORTDLC = PORTDLC&0xF7; /*установить RS в 0 для передачи команды */
PORTDLC = PORTDLC|0x04; /*установить E в 1 */
PORTDLC = 0x00; /* установить E и RS в 0 */
delay_100us();
delay_100us();
}
/********************************************************************/
/* delay_5ms: программная задержка 5 мс */
/********************************************************************/
void delay_5ms(void) {
int i;
for (i=0; i<50; i++) {
delay_100us();
}
}
/********************************************************************/
/* delay_100us:программная задержка в 100 мс */
/********************************************************************/
void delay_100us(void) {
int i;
for(i=0; i<800; i++) {
asm("nop");/*выполнение команды nор ассемблера занимает 1 период*/
}
}
/********************************************************************/
/* display_count_LCD: преобразует целое число в ASCII символ */
/* для вывода на ЖКИ */
/********************************************************************/
void display_count_LCD(unsigned int count) {
unsigned int thousands_int;
unsigned int hundreds_int;
unsigned int tens_int;
unsigned int ones_int;
char thousands;
char hundreds;
char tens;
char ones;
/*выбирает и преобразует наибольшую значащую цифру в десятичное */
/* значение + 48, образуя ASCII код */
thousands_int = count/1000;
thousands = (char)(thousands_int + 48);
/*выбирает и преобразует следующую наибольшую значащую цифру */
/* в десятичное значение + 48, образуя ASCII код */
hundreds_int = (count - thousands_int*1000)/100;
hundreds = (char)(hundreds_int + 48);
/*выбирает и преобразует следующую наибольшую значащую цифру */
/* в десятичное значение + 48, образуя ASCII код */
tens_int = (count - thousands_int*10 0 0 - hundreds_int*100)/10;
tens = (char)(hundreds_int + 48);
/*выбирает и преобразует следующую наибольшую значащую цифру */
/* в десятичное значение + 48, образуя ASCII код */
ones_int = (count-thousands_int*1000-hundreds_int*100-tens_int*10);
ones = (char)(ones_int + 48);
/*выводит результат на ЖКИ*/
putcommands(0x80); /*курсор ЖКИ переводится на строку 1, позицию 1*/
putchars(thousands);
putchars(hundreds);
putchars(tens);
putchars(ones);
}
/********************************************************************/
/********************************************************************/
- Встраиваемые системы Проектирование приложений на микроконтроллерах семейства 68hc12/hcs12 с применением языка с с. Ф. Баррет
- Предисловие
- Структура книги
- Учебные системы
- Целевая аудитория
- Благодарности
- Глава 1 первое знакомство со встраиваемыми системами
- 1.1. Что такое встраиваемая система?
- 1.2. Особенности встраиваемых систем
- 1.2.1. Работа в реальном времени
- 1.2.2. Миниатюризация размеров и процесс тестирования
- 1.2.3. Минимизация энергии потребления
- 1.2.4. Интерфейс пользователя и интерфейс сопряжения с объектом
- 1.2.5. Многозадачность
- 1.2.6. Минимизация стоимости
- 1.2.7. Ограничение объема памяти
- 1.2.8. Программно–аппаратный дуализм
- 1.3. Введение в микроконтроллеры семейства 68hc12 и hcs12
- 1.4 Микроконтроллеры hcs12
- 1.4.1. Семейство hcs12
- 1.4.2. Обозначения мк
- 1.4.3. Модельный ряд hcs12
- 1.5. Заключение по главе 1
- 1.6. Вопросы и задания Основные
- Более сложные
- Исследовательские
- Глава 2 программирование встраиваемых систем и структурное проектирование
- 2.1. Почему мы программируем микроконтроллеры на Си?
- 2.2. Преимущества программирования на языке ассемблер
- 2.3. Преимущества языков высокого уровня
- 2.3.1. Выбираем язык высокого уровня для программирования встраиваемых систем
- 2.3.2. Краткая история языка Си
- 2.4. Оптимальная стратегия — программирование на Си и на ассемблере
- 2.5. Структурное проектирование
- 2.5.1. Основные положения метода структурного проектирования
- 2.5.2. Документирование программ
- 2.5.3. Как язык Си соотносится со структурным проектированием
- 2.6. Рабочие тетради
- 2.6.1. Порядок ведения записей
- 2.6.2. Содержание записей
- 2.7. Блок схемы алгоритмов
- 2.8. Пример применения
- 2.9. Заключение по главе 2
- 2.10 Что еще почитать?
- 2.11 Вопросы и задания Основные
- Более сложные
- Исследовательские
- Глава 3 основы программирования микроконтроллеров на си
- 3.1. Введение в программирование на Си
- 3.1.1. Глобальные и локальные переменные
- 3.2. Типы данных в Си
- 3.3. Операторы языка Си
- 3.4. Функции
- 3.4.1. Что такое функция?
- 3.4.2. Основная программа
- 3.4.3. Прототипы функций
- 3.4.4. Описание функций
- 3.4.5. Вызов функций, передача параметров, возврат полученных значений
- 3.5. Файлы заголовков
- 3.6. Директивы компилятора
- 3.6.1. Директивы условной компиляции
- 3.7. Конструкции программирования
- 3.8. Операторы для организации программных циклов
- 3.8.1. Оператор for
- 3.8.2. Оператор while
- 3.8.3. Оператор do-while
- 3.9. Операторы принятия решения
- 3.9.1. Оператор if
- 3.9.2. Оператор if-else
- 3.9.3. Оператор if-else if-else
- 3.9.4. Оператор switch
- 3.10. Массивы
- 3.11. Указатели
- 3.12. Структуры
- 3.13. Процесс программирования и отладки микропроцессорной системы
- 3.13.1. Технология создания программного кода
- 3.13.2. Режим отладки bdm
- 3.13.3. Аппаратные и программные средства отладчика p&e от компании pemicro
- 3.13.4. Эмуляторы
- 3.13.5. Логические анализаторы
- 3.14. Особенности компилятора и ассемблера
- 3.15. Заключение по главе 3
- 3.16. Что еще почитать?
- 3.17. Вопросы и задания Основные
- Более сложные
- Исследовательские
- Глава 4 микроконтроллеры 68hc12 и hcs12: архитектура и программирование
- 4.1. Аппаратные средства микроконтроллеров семейства 68hc12
- 4.2. Аппаратные средства мк семейства hcs12
- 4.3. Режимы работы мк семейства 68hc12/hcs12
- 4.3.1. Рабочие режимы
- 4.3.2. Режимы работы отладочной платы m68evb912b32
- 4.4. Назначение выводов мк
- 4.5. Регистры специальных функций мк
- 4.5.1. Виртуальный адрес блока регистров
- 4.6. Порты ввода/вывода
- 4.6.1. Спецификация портов ввода/вывода
- Регистры управления портами
- Вопросы для самопроверки
- Пример применения
- 4.7. Подсистема памяти мк b32
- Пример применения
- 4.7.1. Карта памяти мк b32
- 4.7.2. Изменение адресов в карте памяти мк
- 4.8. Подсистема памяти мк dp256
- Вопросы для самопроверки
- 4.9. Состояния сброса и прерывания мк
- 4.9.1. Реакция мк на внешние события
- 4.10. Состояния сброса и прерывания в мк 68hc12
- 4.10.1. Состояние сброса мк
- Регистры сторожевого таймера и монитора тактирования
- 4.10.2. Прерывания
- Немаскируемые прерывания
- Маскируемые прерывания
- Вопросы для самопроверки
- 3. Каково различие между прерываниями по входам
- 4. Как организовать подсистему прерывания с несколькими внешними запросами для мк семейства 68hc12/hcs12, используя лишь один вход внешнего прерывания
- 4.10.3. Вектора исключений
- 4.10.4. Система приоритетов для исключений
- 1. Внешний сброс по входу
- 5. Немаскируемое прерывание по входу
- Вопросы для самопроверки
- 4. Какие действия должен предпринять программист, чтобы после начального запуска мк присвоить входу
- 4.10.5. Регистры подсистемы прерывания
- 4.11. Процесс перехода к подпрограмме прерывания
- Вопросы для самопроверки
- 4.12. Оформление подпрограммы прерывания на Си
- 4.13. Система тактирования
- 4.13.1.Система тактирования отладочной платы mc68hc912b32evb
- 4.14. Подсистема реального времени — модуль таймера
- 4.14.1. Структура модуля таймера
- 4.14.2. Счетчик временной базы
- Особенности счетчика временной базы
- Флаг переполнения счетчика
- Определение длительности временных интервалов
- Сброс счетчика временной базы
- Вопросы для самопроверки
- 4.14.3. Регистры для управления счетчиком временной базы
- Регистр управления модулем таймера
- Регистр счетчика временной базы
- Регистр масок таймера 2
- 4.14.4. Каналы захвата/сравнения
- Режим входного захвата
- Вопросы для самопроверки
- Режим выходного сравнения
- Канал 7 в режиме выходного сравнения
- Регистры для управления каналами захвата/сравнения
- Регистры управления таймером 3 и 4
- Регистр масок таймера 1
- Регистр масок таймера 2
- Регистр флагов таймера 1
- Регистр флагов таймера 2
- Регистры данных каналов захвата/сравнения
- Вопросы для самопроверки
- Примеры работы с таймером
- Измерение частоты и периода логического сигнала
- Генерация импульсной последовательности
- Генерация импульсной последовательности с использованием прерывания
- 4.14.5. Счетчик событий
- Режимы работы счетчика
- Регистры управления счетчиком событий
- Регистр управления счетчиком событий
- Регистр флагов счетчика событий
- Регистр текущего состояния счетчика событий
- Пример использования счетчика событий
- 4.15. Модуль меток реального времени
- Пример использования модуля меток реального времени
- 4.16. Модуль таймера ect в составе мк мc68hc12be32 и hcs12
- 4.16.1. Небуферированные каналы входного захвата
- 4.16.2. Буферированные каналы входного захвата
- 4.16.3. Особенности счетчиков событий
- 4.16.4. Регистры управления модуля est
- Регистр управления порядком перезаписи
- Регистр управления режимом входного захвата
- Регистр управления счетчиком задержки
- Регистр управления 16-разрядным вычитающим счетчиком
- Регистр коэффициента счета вычитающего счетчика
- Регистр флагов вычитающего счетчика
- 4.17. Обмен информацией в последовательном коде: многофункциональный последовательный интерфейс
- 4.17.1. Термины последовательного обмена
- Вопросы для самопроверки
- 4.18. Контроллер асинхронного обмена sci
- Вопросы для самопроверки
- 4.18.1. Передатчик контроллера sci
- 4.18.2. Приемник контроллера sci
- 4.18.3. Регистры контроллера sci
- Регистры скорости обмена sCxBdh и sCxBdl
- Регистры управления sCxCr1 и sCxCr2
- Регистры состояния sCxSr1 и sCxSr2
- Регистры данных sCxDrh и sCxDrl
- Вопросы для самопроверки
- 4.18.4. Алгоритмы программного обслуживания контроллера sci
- 4.18.5. Пример программирования контроллера sci
- 4.19. Синхронный последовательный интерфейс spi
- 4.19.1 Концепция интерфейса spiФункциональная схема обмена между двумя контроллерами spi
- 4.19.2. Алгоритмы работы контроллера spi
- Вопросы для самопроверки
- 4.19.3. Регистры контроллера spi
- Регистр скорости обмена sPxBr
- Регистры управления sPxCr1 и sPxCr2
- Регистр данных spCxDr
- Регистр данных порта s
- Регистр направления передачи порта s
- Вопросы для самопроверки
- 4.19.4. Алгоритмы программного обслуживания контроллера spi
- 4.19.5 Периферийные ис с интерфейсом spi
- 4.20. Введение в теорию аналого-цифрового преобразования
- 4.20.1. Частота дискретизации сигнала
- 4.20.2. Представление аналоговой величины в цифровом коде
- 4.20.3.Квантование по уровню и разрешающая способность
- 4.20.4 Скорость потока данных оцифровки
- Вопросы для самопроверки
- 4.21. Принцип действия ацп
- 4.21.1. Ацп последовательного приближения
- Вопросы для самопроверки
- 4.22. Подсистема аналого-цифрового преобразования мк 68hc12
- 4.22.1 Структура и порядок функционирования
- 4.22.2. Регистры управления модуля atd
- Группа регистров управления
- Регистры управления atdctl0 и atdctl1
- Регистр управления atdctl2
- Регистр управления atdctl3
- Регистр управления atdctl4Формат регистра atdctl4
- Регистр управления atdctl5
- Вопросы для самопроверки
- Регистр состояния atdstat
- Регистр данных порта portad
- Регистры результата adr0h…adr7h
- Вопросы для самопроверки
- Тестовый регистр atdtest
- 4.22.3. Пример программирования модуля atd
- Цифровой вольтметр
- 4.22.4. Обслуживание прерываний от модуля atd
- 4.23. Особенности модуля atd в составе мк семейства hcs12
- 4.23.1. Выбор разрядности ацп
- 4.23.2. Представление результата измерения
- 4.23.3. Запуск измерительной последовательности от внешнего сигнала
- 4.23.4. Программируемое число преобразований в измерительной последовательности
- 4.23.5. Увеличение числа аналоговых входов
- 4.23.6. Регистры модуля atd hcs12
- Регистр состояния atdstat0
- Регистр состояния atdstat1
- Регистр разрешения цифрового входа порта atddien
- 4.24. Подсистема широтно-импульсной модуляции
- 4.24.1. Структура модуля pwm
- 4.24.2. Режимы центрированной и фронтовой шим
- 4.24.3. Система тактирования
- 4.24.4. Регистры модуля pwm
- Регистр конфигурации pwclk
- Регистр конфигурации pwpol
- Регистр разрешения работы каналов pwen
- Регистр дополнительного делителя pwpres
- Регистры делителей pwscnt0/pwscnt1 и pwscal0/pwscal0
- Регистры счетчика каналов pwcnTx
- Регистры периода каналов pwpeRx
- Регистры коэффициента заполнения каналов pwdtYxФормат регистров коэффициента заполнения pwdtYx
- Регистры коэффициента заполнения каналов pwdtYx
- Регистр управления pwctl
- Регистр специальных режимов pwtst
- Регистры работы с портом p
- 4.24.5. Примеры программирования модуля pwm
- Инициализация модуля pwm, пример 1
- Инициализация модуля pwm, пример 2
- 4.25. Ограничение энергии потребления
- 4.25.1. Как остановить мк 68hc12
- 4.25.2. Как вывести мк 68hc12 из состояния пониженного энергопотребления
- 4.26. Советы по использованию платы отладки mc68evb912b32
- 4.27. Заключение по главе 4
- 4.28. Что еще почитать?
- 4.29. Вопросы и задания Основные
- Исследовательские
- Глава 5 основы сопряжения мк с устройствами ввода/вывода
- 5.1. Электрические характеристики мк 68hc12
- 5.1.1. Нагрузочные характеристики
- 5.1.2. Что произойдет, если Вы должным образом не учтете электрические характеристики периферийных ис?
- 5.1.3. Входные и выходные характеристики логических элементов
- 5.2. Устройства дискретного ввода: кнопки, переключатели, клавиатуры
- 5.2.1. Кнопки и переключатели
- 5.2.2. Dip переключатели
- 5.2.3. Клавиатуры
- 5.3. Устройства индикации: светодиоды, семисегментные индикаторы, индикаторы логического выхода с тремя состояниями
- 5.3.1. Светодиоды
- 5.3.2. Семисегментные индикаторы
- 5.3.3. Индикаторы для логического выхода с тремя состояниями
- 5.4. Программное обслуживание дискретных входов и выходов
- 5.5. Подавление механического дребезга контактов переключателей
- 5.5.1. Аппаратная защита от механического дребезга контактов
- 5.5.2. Программная защита от механического дребезга контактов
- 5.5.3. Пример программной защиты
- 5.6. Жидкокристаллические индикаторы
- 5.6.1. Краткие сведения о жидкокристаллических индикаторах
- 5.6.2. Сопряжение мк с символьным жк индикатором
- 5.6.3 Сопряжение мк с графическим жк дисплеем
- 5.7. Управление электрическим двигателем
- 5.7.1. Силовые полупроводниковые ключи
- 5.7.2. Оптоэлектронная потенциальная развязка
- 5.7.3. Инвертор напряжения
- 5.8. Кодовый замок
- 5.8.1. Схема подключения периферийных устройств
- 5.8.2. Программа управления
- 5.9. Интерфейс мк с аналоговыми датчиками
- 5.10. Интерфейс rs-232
- 5.11. Заключение по главе 5
- 5.12. Что еще почитать?
- 5.13. Вопросы и задания Основные
- Более сложные
- Исследовательские
- Глава 6 добро пожаловать в реальный мир!
- 6.1. Ужасные истории об ошибках проектирования
- 6.1.1. Случай квадратичного генератора
- 6.1.2. Случай таймера для лазерного излучения
- 6.2. Правила обращения с микросхемой 68нс12 и рекомендации по проектированию
- 6.2.1. Рекомендации по обращению со cmos
- 6.2.2. Рекомендации по проектированию на cmos
- 6.3. Исследование помех
- 6.3.1. Что такое помехи
- 6.3.2. Электромагнитная совместимость
- 6.3.3. Спецификации системы помех — не будем крепки задним умом!
- 6.3.4. Методы снижения помех
- 6.4. Защитное программирование
- 6.5. Методики испытаний на наличие помех
- 6.5.1. Обнаружение помех
- 6.5.2. Испытание на чувствительность к помехам
- 6.5.3. Испытания на электромагнитную совместимость
- 6.6. Управление энергопотреблением
- 6.6.1. Параметры потребляемой мощности для микроконтроллера 68hc12
- 6.6.2. Типы батарей
- 6.6.3. Емкость батарей
- 6.6.4. Стабилизация напряжения
- 6.6.5. Схемы супервизора для микропроцессора
- 6.6.6. Меры энергосбережения
- 6.7. Заключение по главе 6
- 6.8. Что еще прочитать?
- 6.9. Вопросы и задания Основные
- Более сложные
- Исследовательские
- Глава 7 примеры встроенных систем управления
- 7.1. Система привода робота, движущегося вдоль стенок лабиринта
- 7.1.1. Описание проекта
- 7.1.2. Подсистемы 68hc12, используемые в проекте
- 7.1.3. Компоненты системы
- 7.1.4. Структура программы и блок-схема алгоритма
- 7.1.5. Программный код
- 7.2. Лазерный проектор
- 7.2.1. Описание проекта
- 7.2.2. Подсистемы 68hc12 используемые в проекте
- 7.2.3. Описание некоторых компонентов системы
- 7.2.4. Аппаратные средства
- 7.2.5. Структура программы и блок-схема алгоритма
- 7.2.6. Программный код
- 7.2.7. Испытания устройства
- 7.2.8. Заключительные испытания системы управления
- 7.3. Цифровой вольтметр
- 7.3.1. Описание проекта
- 7.3.2. Системы 68hc12 используемые в проекте
- 7.3.3. Расчет интерфейса модуля atd
- 7.3.4. Структура программы и блок-схема алгоритма
- 7.3.5. Программа управления
- 7.3.6. Измерение неэлектрических величин
- 7.4. Стабилизация скорости вращения двигателя с использованием оптического тахометра
- 7.4.1. Описание проекта
- 7.4.2. Немного теории
- 7.4.3. Анализ
- 7.4.4. Структура программы и блок-схема алгоритма
- 7.4.5. Программный код
- 7.4.6. Испытания
- 7.5. Парящий робот
- 7.5.1. Описание проекта
- 7.5.2. Системы hcs12 используемые в проекте
- 7.5.3. Теоретическое обсуждение
- 7.5.4. Структура программы и блок-схема алгоритма
- 7.5.5. Программный код
- 7.5.6. Некоторые комментарии
- 7.6. Система защиты компьютера, основанная на нечеткой логике
- 7.6.1. Описание проекта
- 7.6.2. Использование системы hcs12
- 7.6.3. Основы теории
- 7.6.4. Структура программы и блок-схема алгоритма
- 7.6.5. Описание системы
- 7.6.6. Обсуждение проекта
- 7.6.7. Программный код
- 7.6.8. Некоторые комментарии
- 7.7. Электронная версия игры в «15»
- 7.7.1. Описание проекта
- 7.7.2. Системы hcs12 используемые в проекте
- 7.7.3. Основы теории
- 7.7.4. Схемное решение, структура программы и блок-схема алгоритма
- 7.7.5. О компонентах системы
- 7.7.6. Программный код
- 7.7.7. Некоторые комментарии
- 7.8. Программирование резидентного Flash пзу микроконтроллера b32 в составе платы отладки mc68hc912b32evb
- 7.9. Заключение по главе 7
- 7.10. Что еще прочитать?
- 7.11. Вопросы и задания Основные
- Более сложные
- Исследовательские
- Глава 8 операционные системы реального времени
- 8.1. Рассказ: официант — «живая» операционная система реального времени
- 8.2. Что является целью осрв?
- Вопросы для самопроверки
- 8.3. Обзор концепций
- 8.3.1. Требования к динамическому распределению ram
- Вопросы для самопроверки
- 8.3.2. Динамическое распределение памяти
- 8.3.3. Структуры данных
- 8.4. Основные понятия
- 8.4.1. Что такое задача?
- 8.4.2. Управление задачами
- 8.4.3. Компоненты многозадачных систем
- 8.5. Типы операционных систем реального времени
- 8.5.1. Системы с циклическим опросом
- 8.5.2. Циклический опрос с прерываниями
- 8.5.3. Карусельные системы
- 8.5.4. Смешанные системы
- 8.5.5. Системы с управлением по прерыванию
- 8.5.6. Кооперативная многозадачность
- 8.5.7. Многозадачные системы с преимущественным приоритетом
- 8.6. Проблемы осрв
- 8.6.1. Конкуренция Другой рассказ
- 8.6.2. Повторная входимость
- 8.6.3. Межзадачные связи
- 8.6.4. Безопасность, проверка и безотказная работа
- 8.6.5. Главный вопрос
- 8.7. Выполнение операционной системы реального времени
- 8.8. Пример применения: осрв циклического опроса
- 8.8.1. Краткий обзор проекта
- 8.8.2. Пример кода
- 8.8.3. Испытание контроллера усилителя
- 8.9. Другая прикладная программа: цикл опроса с прерываниями
- 8.10. Сложное прикладное устройство: имитатор осрв
- 8.10.1. Краткий обзор проекта
- 8.10.2. Типовой код
- 8.11.Заключение по главе 8
- 8.12. Что еще почитать?
- 8.13. Вопросы и задания Основные
- Более сложные
- Исследовательские
- Глава 9 распределенные сети с интерфейсом msCan
- 9.1. Компьютерные сети
- 9.2. Промышленные сети
- 9.3. Сети с протоколом can
- 9.3.1. Протокол can
- 9.3.2. Модуль контроллера последовательного обмена msCan12
- Подсистема прерывания контроллера msCan12.
- 9.3.3. Проблемы синхронизации
- 9.3.4. Конфигурирование модуля msCan12 для работы в сети
- 9.4. Различия между контроллерами msCan в составе 68hc12 и hcs12
- 9.5. Пример программирования контроллера msCan Схема включения аппаратных средств для двух отладочных плат Axiom
- 9.6. Контроллер последовательного обмена bdlc
- 9.7. Заключение по главе 9
- 9.8. Что еще почитать?
- 9.9. Вопросы и задания Основные
- Более сложные
- Исследовательские