7.1.5. Программный код
/********************************************************************/
/*имя файла: robot.c */
/* Система управления роботом, движущимся в лабиринте: это система */
/* состоящих из излучателя и приемника, чтобы определять свое положение*/
/* относительно стенок лабиринта. */
/* опорного напряжения, то стенка находится в непосредственной близости*/
/* от робота.Основываясь на информации, получаемой от пяти датчиков,*/
/* робот может определять, какое направление дальнейшего движения */
/* избрать, чтобы избежать столкновения со стенками лабиринта. */
/* Датчик Холла позволяет роботу обнаружить магниты или "скрытые мины",*/
/* установленные под полом лабиринта. Робот имеет также ЖК дисплей */
/* для сообщения информации пользователю. Программа использует метод*/
/* полинга для считывания результатов АЦП.Сигнал модуля ШИМ */
/* управляет драйвером двигателей колес робота. */
/*Автор: Томас Шеи. Дата создания: 18 октября 2002 */
/*Последняя редакция: 4 декабря 2002 */
/********************************************************************/
/* Включенные файлы*/
#include <912b32.h>
#include <stdio.h>
/*Пороги датчиков были определены экспериментально*/
#define opto_threshold 0x50 /* порог оптического датчика */
#define hes_threshold 0x80 /* порог датчика Холла */
#define forward 0
#define half_left 1
#define half_right 2
#define left_turn 3
#define right_turn 4
#define back_up 5
/*глобальные переменные*/
unsigned int i=0,j=0; /*переменные для программной задержки */
unsigned char sens[6]={0, 0, 0, 0, 0, 0};/*массив результатов АЦП */
/*прототипы функций*/
void init_adc(void); /*инициализация АЦП */
void read_adc(void); /*считывание значений АЦП */
void decision(void); /*передача решения о повороте, основанного на */
/*данных АЦП* /
void init_pwm(void); /*инициализация ШИМ */
void pwm_motors(const char a); */активация ШИМ для пересылки */
void lcd_init(void); /* инициализация дисплея */
int putchar(char c); /*вывод символа на дисплей */
int putcommand(char с); /*вывод команды на дисплей */
void delay_25(void); /*подпрограмма задержки на 2,5 с */
void lcd_print(char *string); /*вывод строки на ЖК дисплей */
void main() {
asm(".area vectors(abs)\n" /*инициализация вектора сброса МК */
" org 0xFFF8\n"
" .word 0x8000, 0x8000, 0x8000, 0x8000\n"
".text");
lcd_init(); /*инициализация ЖК дисплея */
lcd_print("LCD initialized");
void delay_25(void); /* задержки на 2,5 с */
init_adc(); /*инициализация АЦП */
lcd_print("ADC initialized");
void delay_25(void); /* задержки на 2,5 с */
init_pwm(); /*инициализация ШИМ */
lcd_print("PWM initialized");
void delay_25(void); /* задержки на 2,5 с */
while(1) / *непрерывный цикл */
{
read_adc(); /* считать текущее значение из АЦП */
decision(); /* принять решение о направлении движения */
}
} /*конец программы main*/
********************************************************************/
/*initialize_adc: инициализация АЦП контроллера 68HC12 */
/*******************************************************************/
void init_adc() {
ATDCTL2 = 0x80; /*Установить бит ADPU для подачи питания на АЦП */
ATDCTL3 = 0x00;
ATDCTL4 = 0x7F; /* частоту P_CLK установить на 125 кГц */
/* время преобразования: 32 ATD CLK, */
/*1 считывание каждые 256 мкс /*
for(i=0; i<67; i++) /*задержка 100 мкс при 8 МГц E_CLK */
{
;
}
}
/********************************************************************/
/********************************************************************/
/*read_adc: считывание результатов из АЦП */
/********************************************************************/
void read_adc() {
ATDCTL5 = 0x50; /*Установить АЦП на режим многоканального,*/
/* преобразования 8 каналов */
while((ATDSTAT & 0x8000) == 0)/* проверка бита SCF для окончания */
/*преобразования */
{
;
}
/* сохранения результата в глобальном массиве */
sens[0] = ADR7H; /*дальний левый датчик */
sens[l] = ADR6H; /*средний правый датчик */
sens[2] = ADR5H; /*центральный датчик */
sens[3] = ADR4H; /* средний правый датчик */
sens[4] = ADR3H; /* дальний правый датчик */
sens[5] = ADR2H; /*датчик Холла*/
}
/********************************************************************/
/*decision(): решение о повороте основано на информации, полученной от*/
/* пяти датчиков. Порог датчика Холла (hes_threshold) и порог */
/* оптического датчика (opto_threshold) определяются экспериментально.*/
/********************************************************************/
void decision() {
if (sens[5] < hes_threshold) { /* датчик Холла нашел "мину", */
pwm_motors(back_up); /* робот движется назад и определяются */
/* дальнейшие действия/*
if (sens[0] > opto_threshold) pwm_motors(right_turn);
else pwm_motors(left_turn);
for(i=0; i<0xFFFF; i++){ /*задержка вращения двигателя */
for(j=0; j<15; j++) {
;
}
}
}
/*если обнаруживает три стенки (тупик), то движется назад */
else if((sens[2]>opto_threshold) && (sens[0]>opto_threshold)
&& (sens[4]>opto_threshold)) {
pwm_motors(back_up);
}
/*если стенки спереди и слева, поворачивает направо */
else if((sens[0]>opto_threshold)&&(sens[2]>opto_threshold)) {
pwm_motors(right_turn);
}
/*если стенки спереди и справа, поворачивает налево */
else if((sens[2]>opto_threshold)&&(sens[4]>opto_threshold)) {
pwm_motors(left_turn);
}
/*если стенка спереди справа, делает полуповорот направо*/
else if(sens[1]>opto_threshold) {
pwm_motors(half_right);
}
/*если стенка спереди слева, делает полуповорот налево */
else if(sens[3] > opto_threshold) {
pwm_motors (half_left) ;
}
/*если стенки вблизи нет, продолжает движение вперед */
else {
pwm_motors(forward);
}
}
/********************************************************************/
/*init_pwm(): инициализация ШИМ контроллера 68HС12 */
/********************************************************************/
void init_pwm() {
PWTST= 0x00;
PWCTL= 0x00; /*Режим фронтовой ШИМ */
WCLK= 0x3F; /*Каналы без каскадного соединения, E_CLK/128 */
PWPOL= 0x0F; /*set pins high then low transition */
DDRP = 0xFF; /*Порт PORT T на вывод */
PWEN = 0x0F; /*Активизировать выход ШИМ */
PWPER0 = 250; /*Установить частоту ШИМ 250 Гц */
PWPER1 = 250;
PWPER2 = 250;
PWPER3 = 250;
PWDTY0 = 0; /*начальная установка ШИМ на отсутствие движения*/
PWDTY1 = 0;
PWDTY2 = 0;
PWDTY3 = 0;
}
/********************************************************************/
/*pwm_motors: /*выполнение определенного поворота */
/********************************************************************/
void pwm_motors(const char a) {
for (i = 0;i<2000;i++) /*задержка на 3 мс чтобы позволить двигателю*/
{ /* отреагировать*/
}
switch(a) { /*определение вида поворота */
case 0: /* движение вперед */
PWDTY0 = 200; /*регистры коэффициента заполнения ШИМ */
PWDTY1 = 250;
PWDTY2 = 250;
PWDTY3 = 200;
lcd_print("Forward\n");
break;
case 1: /*полуповорот налево */
PWDTY0 = 0; /*регистры коэффициента заполнения ШИМ */
PWDTY1 = 250;
PWDTY2 = 250;
PWDTY3 = 125;
lcd_print("Half Left\n");
break;
case 2: /*полуповорот направо*/
PWDTY0 = 125; /*регистры коэффициента заполнения ШИМ */
PWDTY1 = 250;
PWDTY2 = 250;
PWDTY3 = 0;
lcd_print("Half Right\n");
break;
case 3: /*поворот налево*/
PWDTY0 = 125; /*регистры коэффициента заполнения ШИМ */
PWDTY1 = 250;
PWDTY2 = 0;
PWDTY3 = 125;
lcd_print("Left Turn\n");
break;
case 4: /*поворот направо*/
PWDTY0 = 125; /*регистры коэффициента заполнения ШИМ */
PWDTY1 = 0;
PWDTY2 = 250;
PWDTY3 = 125;
lcd_print("Right Turn\n");
break;
case 5: /*задний ход*/
PWDTY0 = 125; /*регистры коэффициента заполнения ШИМ */
PWDTY1 = 0;
PWDTY2 = 0;
PWDTY3 = 125;
for(i=0; i<0xFFFF; i++) { /* Задержка в 1,25 с перед движением назад*/
for(j=0; j<15; j++) {
;
}
}
lcd_print("Back Up\n");
break;
default: /*по умолчанию движение вперед, малая скорость */
PWDTY0 = 63; /*регистры коэффициента заполнения ШИМ */
PWDTY1 = 250;
PWDTY2 = 250;
PWDTY3 = 63;
lcd_print("Error\n");
break;
}
}
/********************************************************************/
/*lcd_init(): инициализация режима работы ЖК дисплея */
/*Последовательность команд инициализации определяется изготовителем*/
/*PORTA: магистраль данных, PORTB[2:1]: линия R/S, линия разрешения E*/
/********************************************************************/
void lcd_init() {
DDRA=0xff; /*порт PORTA на вывод */
DDRB=0x06; /* порт PORTB [2:1] на вывод */
/*последовательности команд для инициализации ЖК дисплея */
putcommand(0x38);
putcommand(0x38);
putcommand(0x38);
putcommand(0x38);
putcommand(0x0f);
putcommand(0x01);
putcommand(0x06);
putcommand(0x00);
/*очистка дисплея, возврат курсора */
putcommand(0x00);
}
/********************************************************************/
/*putchar(char c): вывод символа на дисплей */
/********************************************************************/
int putchar(char c) {
PORTA=C;
PORTB= PORTB |0x04;
PORTB= PORTB |0x02;
PORTB= PORTB&0xfd;
for (i=0; i<100; i++); /*задержка на *150 мкс до того, как ЖКД */
/* сможет принять информацию */
return с;
}
/********************************************************************/
/********************************************************************/
/*putcommand(char c): выдача команды управления для ЖК дисплея */
/********************************************************************/
int putcommand(char с) {
PORTA= с;
PORTB= PORTB&0xfb;
PORTB= PORTB|0x02;
PORTB= PORTB&0xfd;
for (i=0; i<100; i++) /* задержка на *150 мкс до того, как ЖКД сможет*/
/*принять информацию */
{
;
}
return c;
}
/********************************************************************/
/*delay_25(): задержка на 2.5 с */
/********************************************************************/
void delay_25() {
for (i=0; i<0xFFFF; i++) {
for (j=0; j<30; j++) {
;
}
}
}
/********************************************************************/
/*lcd_print(): вывод строки символов на дисплей. */
/********************************************************************/
void lcd_print(char *string) {
putcommand(0x02); /*возврат курсора ЖКД */
while (*(string) != '\0') {
putchar(*string);
string++;
}
}
/********************************************************************/
- Встраиваемые системы Проектирование приложений на микроконтроллерах семейства 68hc12/hcs12 с применением языка с с. Ф. Баррет
- Предисловие
- Структура книги
- Учебные системы
- Целевая аудитория
- Благодарности
- Глава 1 первое знакомство со встраиваемыми системами
- 1.1. Что такое встраиваемая система?
- 1.2. Особенности встраиваемых систем
- 1.2.1. Работа в реальном времени
- 1.2.2. Миниатюризация размеров и процесс тестирования
- 1.2.3. Минимизация энергии потребления
- 1.2.4. Интерфейс пользователя и интерфейс сопряжения с объектом
- 1.2.5. Многозадачность
- 1.2.6. Минимизация стоимости
- 1.2.7. Ограничение объема памяти
- 1.2.8. Программно–аппаратный дуализм
- 1.3. Введение в микроконтроллеры семейства 68hc12 и hcs12
- 1.4 Микроконтроллеры hcs12
- 1.4.1. Семейство hcs12
- 1.4.2. Обозначения мк
- 1.4.3. Модельный ряд hcs12
- 1.5. Заключение по главе 1
- 1.6. Вопросы и задания Основные
- Более сложные
- Исследовательские
- Глава 2 программирование встраиваемых систем и структурное проектирование
- 2.1. Почему мы программируем микроконтроллеры на Си?
- 2.2. Преимущества программирования на языке ассемблер
- 2.3. Преимущества языков высокого уровня
- 2.3.1. Выбираем язык высокого уровня для программирования встраиваемых систем
- 2.3.2. Краткая история языка Си
- 2.4. Оптимальная стратегия — программирование на Си и на ассемблере
- 2.5. Структурное проектирование
- 2.5.1. Основные положения метода структурного проектирования
- 2.5.2. Документирование программ
- 2.5.3. Как язык Си соотносится со структурным проектированием
- 2.6. Рабочие тетради
- 2.6.1. Порядок ведения записей
- 2.6.2. Содержание записей
- 2.7. Блок схемы алгоритмов
- 2.8. Пример применения
- 2.9. Заключение по главе 2
- 2.10 Что еще почитать?
- 2.11 Вопросы и задания Основные
- Более сложные
- Исследовательские
- Глава 3 основы программирования микроконтроллеров на си
- 3.1. Введение в программирование на Си
- 3.1.1. Глобальные и локальные переменные
- 3.2. Типы данных в Си
- 3.3. Операторы языка Си
- 3.4. Функции
- 3.4.1. Что такое функция?
- 3.4.2. Основная программа
- 3.4.3. Прототипы функций
- 3.4.4. Описание функций
- 3.4.5. Вызов функций, передача параметров, возврат полученных значений
- 3.5. Файлы заголовков
- 3.6. Директивы компилятора
- 3.6.1. Директивы условной компиляции
- 3.7. Конструкции программирования
- 3.8. Операторы для организации программных циклов
- 3.8.1. Оператор for
- 3.8.2. Оператор while
- 3.8.3. Оператор do-while
- 3.9. Операторы принятия решения
- 3.9.1. Оператор if
- 3.9.2. Оператор if-else
- 3.9.3. Оператор if-else if-else
- 3.9.4. Оператор switch
- 3.10. Массивы
- 3.11. Указатели
- 3.12. Структуры
- 3.13. Процесс программирования и отладки микропроцессорной системы
- 3.13.1. Технология создания программного кода
- 3.13.2. Режим отладки bdm
- 3.13.3. Аппаратные и программные средства отладчика p&e от компании pemicro
- 3.13.4. Эмуляторы
- 3.13.5. Логические анализаторы
- 3.14. Особенности компилятора и ассемблера
- 3.15. Заключение по главе 3
- 3.16. Что еще почитать?
- 3.17. Вопросы и задания Основные
- Более сложные
- Исследовательские
- Глава 4 микроконтроллеры 68hc12 и hcs12: архитектура и программирование
- 4.1. Аппаратные средства микроконтроллеров семейства 68hc12
- 4.2. Аппаратные средства мк семейства hcs12
- 4.3. Режимы работы мк семейства 68hc12/hcs12
- 4.3.1. Рабочие режимы
- 4.3.2. Режимы работы отладочной платы m68evb912b32
- 4.4. Назначение выводов мк
- 4.5. Регистры специальных функций мк
- 4.5.1. Виртуальный адрес блока регистров
- 4.6. Порты ввода/вывода
- 4.6.1. Спецификация портов ввода/вывода
- Регистры управления портами
- Вопросы для самопроверки
- Пример применения
- 4.7. Подсистема памяти мк b32
- Пример применения
- 4.7.1. Карта памяти мк b32
- 4.7.2. Изменение адресов в карте памяти мк
- 4.8. Подсистема памяти мк dp256
- Вопросы для самопроверки
- 4.9. Состояния сброса и прерывания мк
- 4.9.1. Реакция мк на внешние события
- 4.10. Состояния сброса и прерывания в мк 68hc12
- 4.10.1. Состояние сброса мк
- Регистры сторожевого таймера и монитора тактирования
- 4.10.2. Прерывания
- Немаскируемые прерывания
- Маскируемые прерывания
- Вопросы для самопроверки
- 3. Каково различие между прерываниями по входам
- 4. Как организовать подсистему прерывания с несколькими внешними запросами для мк семейства 68hc12/hcs12, используя лишь один вход внешнего прерывания
- 4.10.3. Вектора исключений
- 4.10.4. Система приоритетов для исключений
- 1. Внешний сброс по входу
- 5. Немаскируемое прерывание по входу
- Вопросы для самопроверки
- 4. Какие действия должен предпринять программист, чтобы после начального запуска мк присвоить входу
- 4.10.5. Регистры подсистемы прерывания
- 4.11. Процесс перехода к подпрограмме прерывания
- Вопросы для самопроверки
- 4.12. Оформление подпрограммы прерывания на Си
- 4.13. Система тактирования
- 4.13.1.Система тактирования отладочной платы mc68hc912b32evb
- 4.14. Подсистема реального времени — модуль таймера
- 4.14.1. Структура модуля таймера
- 4.14.2. Счетчик временной базы
- Особенности счетчика временной базы
- Флаг переполнения счетчика
- Определение длительности временных интервалов
- Сброс счетчика временной базы
- Вопросы для самопроверки
- 4.14.3. Регистры для управления счетчиком временной базы
- Регистр управления модулем таймера
- Регистр счетчика временной базы
- Регистр масок таймера 2
- 4.14.4. Каналы захвата/сравнения
- Режим входного захвата
- Вопросы для самопроверки
- Режим выходного сравнения
- Канал 7 в режиме выходного сравнения
- Регистры для управления каналами захвата/сравнения
- Регистры управления таймером 3 и 4
- Регистр масок таймера 1
- Регистр масок таймера 2
- Регистр флагов таймера 1
- Регистр флагов таймера 2
- Регистры данных каналов захвата/сравнения
- Вопросы для самопроверки
- Примеры работы с таймером
- Измерение частоты и периода логического сигнала
- Генерация импульсной последовательности
- Генерация импульсной последовательности с использованием прерывания
- 4.14.5. Счетчик событий
- Режимы работы счетчика
- Регистры управления счетчиком событий
- Регистр управления счетчиком событий
- Регистр флагов счетчика событий
- Регистр текущего состояния счетчика событий
- Пример использования счетчика событий
- 4.15. Модуль меток реального времени
- Пример использования модуля меток реального времени
- 4.16. Модуль таймера ect в составе мк мc68hc12be32 и hcs12
- 4.16.1. Небуферированные каналы входного захвата
- 4.16.2. Буферированные каналы входного захвата
- 4.16.3. Особенности счетчиков событий
- 4.16.4. Регистры управления модуля est
- Регистр управления порядком перезаписи
- Регистр управления режимом входного захвата
- Регистр управления счетчиком задержки
- Регистр управления 16-разрядным вычитающим счетчиком
- Регистр коэффициента счета вычитающего счетчика
- Регистр флагов вычитающего счетчика
- 4.17. Обмен информацией в последовательном коде: многофункциональный последовательный интерфейс
- 4.17.1. Термины последовательного обмена
- Вопросы для самопроверки
- 4.18. Контроллер асинхронного обмена sci
- Вопросы для самопроверки
- 4.18.1. Передатчик контроллера sci
- 4.18.2. Приемник контроллера sci
- 4.18.3. Регистры контроллера sci
- Регистры скорости обмена sCxBdh и sCxBdl
- Регистры управления sCxCr1 и sCxCr2
- Регистры состояния sCxSr1 и sCxSr2
- Регистры данных sCxDrh и sCxDrl
- Вопросы для самопроверки
- 4.18.4. Алгоритмы программного обслуживания контроллера sci
- 4.18.5. Пример программирования контроллера sci
- 4.19. Синхронный последовательный интерфейс spi
- 4.19.1 Концепция интерфейса spiФункциональная схема обмена между двумя контроллерами spi
- 4.19.2. Алгоритмы работы контроллера spi
- Вопросы для самопроверки
- 4.19.3. Регистры контроллера spi
- Регистр скорости обмена sPxBr
- Регистры управления sPxCr1 и sPxCr2
- Регистр данных spCxDr
- Регистр данных порта s
- Регистр направления передачи порта s
- Вопросы для самопроверки
- 4.19.4. Алгоритмы программного обслуживания контроллера spi
- 4.19.5 Периферийные ис с интерфейсом spi
- 4.20. Введение в теорию аналого-цифрового преобразования
- 4.20.1. Частота дискретизации сигнала
- 4.20.2. Представление аналоговой величины в цифровом коде
- 4.20.3.Квантование по уровню и разрешающая способность
- 4.20.4 Скорость потока данных оцифровки
- Вопросы для самопроверки
- 4.21. Принцип действия ацп
- 4.21.1. Ацп последовательного приближения
- Вопросы для самопроверки
- 4.22. Подсистема аналого-цифрового преобразования мк 68hc12
- 4.22.1 Структура и порядок функционирования
- 4.22.2. Регистры управления модуля atd
- Группа регистров управления
- Регистры управления atdctl0 и atdctl1
- Регистр управления atdctl2
- Регистр управления atdctl3
- Регистр управления atdctl4Формат регистра atdctl4
- Регистр управления atdctl5
- Вопросы для самопроверки
- Регистр состояния atdstat
- Регистр данных порта portad
- Регистры результата adr0h…adr7h
- Вопросы для самопроверки
- Тестовый регистр atdtest
- 4.22.3. Пример программирования модуля atd
- Цифровой вольтметр
- 4.22.4. Обслуживание прерываний от модуля atd
- 4.23. Особенности модуля atd в составе мк семейства hcs12
- 4.23.1. Выбор разрядности ацп
- 4.23.2. Представление результата измерения
- 4.23.3. Запуск измерительной последовательности от внешнего сигнала
- 4.23.4. Программируемое число преобразований в измерительной последовательности
- 4.23.5. Увеличение числа аналоговых входов
- 4.23.6. Регистры модуля atd hcs12
- Регистр состояния atdstat0
- Регистр состояния atdstat1
- Регистр разрешения цифрового входа порта atddien
- 4.24. Подсистема широтно-импульсной модуляции
- 4.24.1. Структура модуля pwm
- 4.24.2. Режимы центрированной и фронтовой шим
- 4.24.3. Система тактирования
- 4.24.4. Регистры модуля pwm
- Регистр конфигурации pwclk
- Регистр конфигурации pwpol
- Регистр разрешения работы каналов pwen
- Регистр дополнительного делителя pwpres
- Регистры делителей pwscnt0/pwscnt1 и pwscal0/pwscal0
- Регистры счетчика каналов pwcnTx
- Регистры периода каналов pwpeRx
- Регистры коэффициента заполнения каналов pwdtYxФормат регистров коэффициента заполнения pwdtYx
- Регистры коэффициента заполнения каналов pwdtYx
- Регистр управления pwctl
- Регистр специальных режимов pwtst
- Регистры работы с портом p
- 4.24.5. Примеры программирования модуля pwm
- Инициализация модуля pwm, пример 1
- Инициализация модуля pwm, пример 2
- 4.25. Ограничение энергии потребления
- 4.25.1. Как остановить мк 68hc12
- 4.25.2. Как вывести мк 68hc12 из состояния пониженного энергопотребления
- 4.26. Советы по использованию платы отладки mc68evb912b32
- 4.27. Заключение по главе 4
- 4.28. Что еще почитать?
- 4.29. Вопросы и задания Основные
- Исследовательские
- Глава 5 основы сопряжения мк с устройствами ввода/вывода
- 5.1. Электрические характеристики мк 68hc12
- 5.1.1. Нагрузочные характеристики
- 5.1.2. Что произойдет, если Вы должным образом не учтете электрические характеристики периферийных ис?
- 5.1.3. Входные и выходные характеристики логических элементов
- 5.2. Устройства дискретного ввода: кнопки, переключатели, клавиатуры
- 5.2.1. Кнопки и переключатели
- 5.2.2. Dip переключатели
- 5.2.3. Клавиатуры
- 5.3. Устройства индикации: светодиоды, семисегментные индикаторы, индикаторы логического выхода с тремя состояниями
- 5.3.1. Светодиоды
- 5.3.2. Семисегментные индикаторы
- 5.3.3. Индикаторы для логического выхода с тремя состояниями
- 5.4. Программное обслуживание дискретных входов и выходов
- 5.5. Подавление механического дребезга контактов переключателей
- 5.5.1. Аппаратная защита от механического дребезга контактов
- 5.5.2. Программная защита от механического дребезга контактов
- 5.5.3. Пример программной защиты
- 5.6. Жидкокристаллические индикаторы
- 5.6.1. Краткие сведения о жидкокристаллических индикаторах
- 5.6.2. Сопряжение мк с символьным жк индикатором
- 5.6.3 Сопряжение мк с графическим жк дисплеем
- 5.7. Управление электрическим двигателем
- 5.7.1. Силовые полупроводниковые ключи
- 5.7.2. Оптоэлектронная потенциальная развязка
- 5.7.3. Инвертор напряжения
- 5.8. Кодовый замок
- 5.8.1. Схема подключения периферийных устройств
- 5.8.2. Программа управления
- 5.9. Интерфейс мк с аналоговыми датчиками
- 5.10. Интерфейс rs-232
- 5.11. Заключение по главе 5
- 5.12. Что еще почитать?
- 5.13. Вопросы и задания Основные
- Более сложные
- Исследовательские
- Глава 6 добро пожаловать в реальный мир!
- 6.1. Ужасные истории об ошибках проектирования
- 6.1.1. Случай квадратичного генератора
- 6.1.2. Случай таймера для лазерного излучения
- 6.2. Правила обращения с микросхемой 68нс12 и рекомендации по проектированию
- 6.2.1. Рекомендации по обращению со cmos
- 6.2.2. Рекомендации по проектированию на cmos
- 6.3. Исследование помех
- 6.3.1. Что такое помехи
- 6.3.2. Электромагнитная совместимость
- 6.3.3. Спецификации системы помех — не будем крепки задним умом!
- 6.3.4. Методы снижения помех
- 6.4. Защитное программирование
- 6.5. Методики испытаний на наличие помех
- 6.5.1. Обнаружение помех
- 6.5.2. Испытание на чувствительность к помехам
- 6.5.3. Испытания на электромагнитную совместимость
- 6.6. Управление энергопотреблением
- 6.6.1. Параметры потребляемой мощности для микроконтроллера 68hc12
- 6.6.2. Типы батарей
- 6.6.3. Емкость батарей
- 6.6.4. Стабилизация напряжения
- 6.6.5. Схемы супервизора для микропроцессора
- 6.6.6. Меры энергосбережения
- 6.7. Заключение по главе 6
- 6.8. Что еще прочитать?
- 6.9. Вопросы и задания Основные
- Более сложные
- Исследовательские
- Глава 7 примеры встроенных систем управления
- 7.1. Система привода робота, движущегося вдоль стенок лабиринта
- 7.1.1. Описание проекта
- 7.1.2. Подсистемы 68hc12, используемые в проекте
- 7.1.3. Компоненты системы
- 7.1.4. Структура программы и блок-схема алгоритма
- 7.1.5. Программный код
- 7.2. Лазерный проектор
- 7.2.1. Описание проекта
- 7.2.2. Подсистемы 68hc12 используемые в проекте
- 7.2.3. Описание некоторых компонентов системы
- 7.2.4. Аппаратные средства
- 7.2.5. Структура программы и блок-схема алгоритма
- 7.2.6. Программный код
- 7.2.7. Испытания устройства
- 7.2.8. Заключительные испытания системы управления
- 7.3. Цифровой вольтметр
- 7.3.1. Описание проекта
- 7.3.2. Системы 68hc12 используемые в проекте
- 7.3.3. Расчет интерфейса модуля atd
- 7.3.4. Структура программы и блок-схема алгоритма
- 7.3.5. Программа управления
- 7.3.6. Измерение неэлектрических величин
- 7.4. Стабилизация скорости вращения двигателя с использованием оптического тахометра
- 7.4.1. Описание проекта
- 7.4.2. Немного теории
- 7.4.3. Анализ
- 7.4.4. Структура программы и блок-схема алгоритма
- 7.4.5. Программный код
- 7.4.6. Испытания
- 7.5. Парящий робот
- 7.5.1. Описание проекта
- 7.5.2. Системы hcs12 используемые в проекте
- 7.5.3. Теоретическое обсуждение
- 7.5.4. Структура программы и блок-схема алгоритма
- 7.5.5. Программный код
- 7.5.6. Некоторые комментарии
- 7.6. Система защиты компьютера, основанная на нечеткой логике
- 7.6.1. Описание проекта
- 7.6.2. Использование системы hcs12
- 7.6.3. Основы теории
- 7.6.4. Структура программы и блок-схема алгоритма
- 7.6.5. Описание системы
- 7.6.6. Обсуждение проекта
- 7.6.7. Программный код
- 7.6.8. Некоторые комментарии
- 7.7. Электронная версия игры в «15»
- 7.7.1. Описание проекта
- 7.7.2. Системы hcs12 используемые в проекте
- 7.7.3. Основы теории
- 7.7.4. Схемное решение, структура программы и блок-схема алгоритма
- 7.7.5. О компонентах системы
- 7.7.6. Программный код
- 7.7.7. Некоторые комментарии
- 7.8. Программирование резидентного Flash пзу микроконтроллера b32 в составе платы отладки mc68hc912b32evb
- 7.9. Заключение по главе 7
- 7.10. Что еще прочитать?
- 7.11. Вопросы и задания Основные
- Более сложные
- Исследовательские
- Глава 8 операционные системы реального времени
- 8.1. Рассказ: официант — «живая» операционная система реального времени
- 8.2. Что является целью осрв?
- Вопросы для самопроверки
- 8.3. Обзор концепций
- 8.3.1. Требования к динамическому распределению ram
- Вопросы для самопроверки
- 8.3.2. Динамическое распределение памяти
- 8.3.3. Структуры данных
- 8.4. Основные понятия
- 8.4.1. Что такое задача?
- 8.4.2. Управление задачами
- 8.4.3. Компоненты многозадачных систем
- 8.5. Типы операционных систем реального времени
- 8.5.1. Системы с циклическим опросом
- 8.5.2. Циклический опрос с прерываниями
- 8.5.3. Карусельные системы
- 8.5.4. Смешанные системы
- 8.5.5. Системы с управлением по прерыванию
- 8.5.6. Кооперативная многозадачность
- 8.5.7. Многозадачные системы с преимущественным приоритетом
- 8.6. Проблемы осрв
- 8.6.1. Конкуренция Другой рассказ
- 8.6.2. Повторная входимость
- 8.6.3. Межзадачные связи
- 8.6.4. Безопасность, проверка и безотказная работа
- 8.6.5. Главный вопрос
- 8.7. Выполнение операционной системы реального времени
- 8.8. Пример применения: осрв циклического опроса
- 8.8.1. Краткий обзор проекта
- 8.8.2. Пример кода
- 8.8.3. Испытание контроллера усилителя
- 8.9. Другая прикладная программа: цикл опроса с прерываниями
- 8.10. Сложное прикладное устройство: имитатор осрв
- 8.10.1. Краткий обзор проекта
- 8.10.2. Типовой код
- 8.11.Заключение по главе 8
- 8.12. Что еще почитать?
- 8.13. Вопросы и задания Основные
- Более сложные
- Исследовательские
- Глава 9 распределенные сети с интерфейсом msCan
- 9.1. Компьютерные сети
- 9.2. Промышленные сети
- 9.3. Сети с протоколом can
- 9.3.1. Протокол can
- 9.3.2. Модуль контроллера последовательного обмена msCan12
- Подсистема прерывания контроллера msCan12.
- 9.3.3. Проблемы синхронизации
- 9.3.4. Конфигурирование модуля msCan12 для работы в сети
- 9.4. Различия между контроллерами msCan в составе 68hc12 и hcs12
- 9.5. Пример программирования контроллера msCan Схема включения аппаратных средств для двух отладочных плат Axiom
- 9.6. Контроллер последовательного обмена bdlc
- 9.7. Заключение по главе 9
- 9.8. Что еще почитать?
- 9.9. Вопросы и задания Основные
- Более сложные
- Исследовательские