logo
Ответы ГОС экзамена

3. Интерференционные светофильтры.Принцип действия.Область применения.

Интерференция (от латинского inter - между и ferens (ferentis) - несущий, переносящий) - это явление, наблюдаемое при сложении в пространстве двух или нескольких волн. Интерференция состоит в том, что интенсивность результирующей волны зависит от разности фаз складываемых волн.

Просветляющие покрытия (или антиотражающие) предохраняют оптические системы от возможного образования бликов при отражении направленных световых пучков от поверхностей отдельных элементов. Просветляющее покрытие - это интерференционный светофильтр, который пропускает все падающее на него излучение. Элементы современных оптических приборов, например объективов, имеют просветляющие покрытия. . Без таких (просветляющих) пленок потери на отражение света могут быть значительными; так в видимой области спектра (длина волны  = 400-700 нм) даже при нормальном падении лучей на границе воздух - оптическая среда они могут составлять до 10% от интенсивности падающего излучения. В системах с большим числом поверхностей, например в сложных объективах, потери света могут достигать 70% и более. Многократное отражение от преломляющих поверхностей вызывает появление внутри приборов рассеянного света, что ухудшает качество изображений, формируемых оптическими системами приборов. Эти нежелательные явления устраняются с помощью просветления оптики, которое является одним из важнейших применений оптики тонких слоев

Просветление оптики - результат интерференции света, отражаемого от передних и задних границ просветляющих пленок; она приводит к взаимному "гашению" отраженных световых волн и, следовательно, к усилению интенсивности проходящего света. При углах падения, близких к нормальному, эффект просветления оптики максимален, если толщина тонкой пленки равна нечетному числу четвертей длины световой волны в материале пленки, а преломления показатель (ПП) пленки удовлетворяет равенству n22 = n1n3, где n1 и n3 - ПП сред, граничащих с пленкой (часто первой средой является воздух). Отраженный свет ослабляется тем сильнее, чем больше разность n3 - n2; если же n2 > n3, то интерференция отраженных от границ пленки лучей, напротив, усилит интенсивность отраженного света (рис. 2).

Рис. 2. Зависимость коэффициента отражения R от выраженной в долях световой волны л толщины тонкого слоя, нанесенного на подложку из стекла, для различных значений показателя преломления слоя n2. Показатель преломления стекла n3= 1,52; n1 = 1 (воздух).

Изменяя толщину просветляющей пленки, можно сместить минимум отражения в различные участки спектра. Покрытия с минимальным отражением в желтой области (l = 555 нм, область наибольшей чувствительности человеческого глаза) наносят на объективы, применяемые в черно-белой фотографии; в отраженном свете их поверхности имеют пурпурный оттенок (т. н. голубая оптика). В просветленных объективах для цветной фотографии отражение минимально в голубой области спектра; оттенок их поверхностей - янтарный. Для деталей из стекла с низким ПП просветление оптики однослойными пленками недостаточно эффективно. Применение двухслойных просветляющих пленок позволяет почти полностью устранить отражение света от поверхности детали-подложки независимо от ее ПП, но лишь в узкой области спектра. Трехслойные просветляющие пленки дают возможность получить равномерно низкое (~ 0,5%) отражение в широкой спектральной области, напр. во всем видимом диапазоне (рис. 3). Двух- и трехслойные покрытия используют для просветления оптики, работающей в ультрафиолетовой области, где из-за низкого значения n3 однослойные покрытия малоэффективны. Теоретически наилучшее просветление оптики в широкой области спектра может быть достигнуто с помощью неоднородных просветляющих пленок, значение ПП которых плавно меняется от n подложки до n окружающей среды.

Цветоделительные пленки - еще один весьма полезный продукт пленочной индустрии. Уже говорилось о том, что подбором материалов (по коэффициентам преломления) и толщины пленок, можно воспроизвести самые разные фильтрующие функции. В частности, можно создать цветовой фильтр, отражающий красную R-составляющую белого луча и пропускающий зеленую G и голубую B. Второй фильтр, как показано на рис. 6б, разделяет эти компоненты на G и B. Примерно по такой же схеме строятся цветоделительные элементы современных видеопроекционных устройств. Цветоделительные системы на интерференционных светофильтрах выпускаются и для телевизионных камер.

В телевизионной оптике широко используется пленочное интерференционное покрытие в объективах, цветоделительных системах, светофильтрах.