17. Передаточная функция
Одной из основных характеристик объекта управления, используемой в теории автоматического управления, является передаточная функция, записываемая в терминах преобразования Лапласа.
Передаточной функцией объекта называется отношение преобразованного по Лапласу выхода объекта у(s) к преобразованному по Лапласу входу х(s) при нулевых начальных условиях.
Передаточная функция определяется только внутренними свойствами системы, является функцией комплексного переменного и обозначается:
(2.9)
Рис. 2.6 Примеры различных объектов:
а — с одним входом и одним выходом; б — двумя входами и одним выходом;
в - двумя входами и двумя выходами
Передаточная функция характеризует динамику объекта только по определенному каналу, связывающему конкретный вход объекта и конкретный выход (рис. 2.6).
Если объект имеет несколько входов и выходов, то он характеризуется несколькими передаточными функциями, определить которые можно непосредственно, пользуясь определением (2.9).
Как и дифференциальное уравнение, передаточная функция полностью характеризует динамику линейного объекта. Если задано дифференциальное уравнение объекта, то для получения передаточной функции необходимо преобразовать дифференциальное уравнение по Лапласу и из полученного алгебраического уравнения найти отношение
В общем случае дифференциальное уравнение объекта представляется в виде
(2.10)
где an,…, a0; bm, …, b0 — постоянные коэффициенты.
После преобразования по Лапласу при нулевых начальных условиях получают:
ansny(s) + an−1sn-1(s)+ ... + a1sy(s) + a0y(s) = bmsmx(s) + bm−1sm-1(s)+ ... +b1sx(s) + b0x(s), или
(ansn + an-1sn-1 + ... + a1s + a0) y(s) = (bmsm + bm-1sm-1 + ... + b1s + b0) x(s), и тогда
Если известна передаточная функция объекта, то изображение выхода объекта у(s) равно произведению передаточной функции на изображение входа x(s):
y(s) = W(s)x(s). (2.11)
Последняя запись есть не что иное, как общая форма записи решения дифференциального уравнения в операторной форме.
Таким образом, передаточная функция равна отношению двух полиномов:
где B(s) = bmsm + bm-1sm-1 ... + b1s + b0; A(s) = ansn + an-1sn-1 + a1s + a0 .
Для реальных физических объектов можно отметить как характерную особенность тот факт, что степень полинома В(s) всегда меньше или равна степени полинома A(s), т.е. m ≤ n, так что
Передаточная функция также взаимно однозначно связана с временными характеристиками.
Если имеется выражение для переходной функции, следовательно, входной сигнал x(t) = 1(t) или , выходной сигнал y(t) = h(t) или y(s) = h(s), и тогда передаточная функция равна
(2.12)
Из (2.12) может быть получено выражение для переходной функции через преобразование Лапласа:
(2.13)
Если известно выражение для весовой функции, то входной сигнал x(t) = δ(t) или x(s) = 1, выходной сигнал w(t) и, следовательно,
(2.14)
т.е. передаточная функция есть не что иное, как преобразование Лапласа от весовой функции.
- Основные понятия и определения
- Звено направленного действия
- 3. Первые промышленные регуляторы. Принципы регулирования.
- 4. Классификация систем автоматического управления
- 5. Регулярные сигналы и их характеристики
- 6,7. Преобразование Лапласа. Свойства
- 8,9. Преобразование Фурье. Свойства
- 10. Представление сигналов
- 11. Виды сигналов
- 12. Уравнения движения
- 13. Определение линейной стационарной системы. Принцип суперпозиции
- 14. Динамическое поведение линейных систем. Динамические хар-ки
- 15. Динамические процессы в системах
- 16. Переходная и весовая функции
- 17. Передаточная функция
- 18. Комплексное переменное
- 19. Частотные характеристики
- 20. Физический смысл частотных характеристик
- 21. Усилительное звено
- 22. Идеальное дифференцирующее звено
- 23. Форсирующее звено
- 24. Апериодическое звено первого порядка
- 25. Инерционно-форсирующее звено
- 26. Параллельное соединение звеньев
- 27. Последовательное соединение звеньев
- 28. Соединение с обратной связью
- 29. Передаточные функции замкнутой системы
- 30. Типовые законы регулирования. Пропорциональный закон регулирования
- 31. Интегральный закон регулирования
- 33. Пропорционально-дифференциальный закон регулирования
- 34. Пропорционально-интегральный закон регулирования
- 35. Пропорционально-интегрально-дифференциальный закон регулирования
- 36. Устойчивость линейных систем
- 37. Устойчивость линейного дифференциального уравнения с постоянными коэффициентами
- 38. Понятие фазового пространства
- 39. Фазовые траектории систем второго порядка
- 40. Автоматизация производственных процессов Задачи систем автоматизации и управления.
- 41. Системотехнические принципы построения государственной системы промышленных приборов и средств автоматизации (гсп)
- 42. Иерархическая структура гсп
- 43. Классификация изделий гсп по функциональному признаку
- 44. Уровни структуры гсп
- 45.Функциональный принцип построения изделий гсп. Функциональные группы издели
- Функциональный принцип построения изделий гсп. Функциональные группы изделий
- 2. Устройства центральной части.
- Номенклатура изделий гсп
- 1.3. Устройства получения информации о технологических параметрах процесса (датчики).
- 1.4. Устройства приема, преобразования и передачи информации по каналам связи.
- 1.5. Устройства преобразования, хранения, обработки, представления информации и формирование команд управления.
- 1.6. Исполнительные устройства.
- Конструктивно-технологический принцип изделий гсп
- Использование вычислительных устройств в системах автоматизации
- Иерархический, системный, функциональный подходы к построению систем автоматизации с использованием эвм
- Неймановский принцип программного управления
- Архитектура контроллера
- Выбор микропроцессорных средств
- Scada-системы. Уровни автоматизации
- Операционные системы реального времени
- Базы данных реального времени
- Функциональные и технические характеристики scada-систем
- Автоматизация объектов магистральных нефтепроводов
- Автоматизация нефтеперекачивающих станций
- Автоматизация резервуарных парков
- Телемеханизация магистральных нефтепроводов