15. Динамические процессы в системах
Основным математическим аппаратом при изучении и исследовании систем управления является аппарат дифференциальных уравнений. Круг рассматриваемых объектов был уже определен - это линейные объекты с сосредоточенными координатами. При этом различают стационарные объекты, коэффициенты дифференциальных уравнений которых не изменяются во времени, и нестационарные объекты, у которых коэффициенты изменяются с течением времени
Большинство объектов регулирования являются нестационарными объектами, однако, скорость изменения их свойств намного меньше скорости регулирования, поэтому такие объекты при расчете систем регулирования можно приближенно рассматривать как стационарные в течение определенного промежутка времени, за который свойства объекта не успевают существенно измениться.
Далее будут рассматриваться линейные стационарные объекты (системы) с сосредоточенными координатами, которые описываются обыкновенными дифференциальными уравнениями с постоянными коэффициентами:
(2.1)
Уравнение (2.1) описывает поведение объекта, который имеет статическую характеристику в неустановившемся (переходном) режиме при любой форме входного сигнала x(t). Частными случаями уравнения (2.1) являются уравнения
(2.2a)
(2.2б)
Для объектов, описываемых уравнением (2.2а), статическая характеристика существует, но является вырожденной, так как b0= 0. Для объектов же, описываемых уравнением (2.2б), статическая характеристика не существует.
Объекты, имеющие статическую характеристику, называются статическими, а не имеющие статической характеристики, называются астатическими.
В большинстве случаев, как уже отмечалось выше, уравнения систем автоматического регулирования оказываются нелинейными, поэтому, если возможно, проводят линеаризацию этих уравнений при помощи ряда Тейлора путем разложения нелинейных функций некоторых переменных по степеням малых приращений этих переменных, взятых в окрестности их значений, соответствующих установившемуся режиму. В результате получают линеаризованные уравнения в отклонениях. Таким образом, в большинстве случаев дифференциальное уравнение (2.2) является уравнением в отклонениях, которое описывает объект или систему регулирования только в окрестности установившегося режима. Для линейных систем уравнения в отклонениях и исходные уравнения совпадают.
Для получения решения уравнения (2.2) необходимо задать начальные условия, под которыми понимается состояние процесса в момент времени, принятом за его начало t = 0:
(2.3)
Общее решение уравнения (2.2) представляется в виде:
(2.4)
В выражении (2.4) yсв(t) является общим решением соответствующего однородного уравнения и увын(t) - частное решение неоднородного уравнения (2.2). Следовательно, yсв(t) соответствует движению системы в отсутствии входного сигнала x(t) ≡ 0, т.е. собственному свободному движению системы, и определяется свойствами самой системы, которые проявляются в свойствах корней характеристического уравнения. Если эти корни различны, то
(2.5)
где λi - корни характеристического уравнения; сi - произвольные постоянные, определяемые из начальных условий.
Частное решение увын(t) зависит от вида функции x(t), определяющей входное воздействие на систему, и соответствует вынужденному движению (состоянию) системы.
Решение (2.4) уравнения (2.2) определяет динамический процесс в системе, происходящий с момента подачи входного воздействия, который принят за начало отсчета времени, поэтому движение системы (переходной процесс) рассматривается только при t ≥ 0, для t < 0 он принят тождественно равным нулю.
Выходной сигнал y(t), получающийся в течение такого процесса, является наиболее полной характеристикой динамических свойств системы, поэтому определение этого сигнала, как уже отмечалось, и является основной задачей теории регулирования. Здесь становится актуальной идея изучения динамических свойств системы с помощью временных характеристик.
- Основные понятия и определения
- Звено направленного действия
- 3. Первые промышленные регуляторы. Принципы регулирования.
- 4. Классификация систем автоматического управления
- 5. Регулярные сигналы и их характеристики
- 6,7. Преобразование Лапласа. Свойства
- 8,9. Преобразование Фурье. Свойства
- 10. Представление сигналов
- 11. Виды сигналов
- 12. Уравнения движения
- 13. Определение линейной стационарной системы. Принцип суперпозиции
- 14. Динамическое поведение линейных систем. Динамические хар-ки
- 15. Динамические процессы в системах
- 16. Переходная и весовая функции
- 17. Передаточная функция
- 18. Комплексное переменное
- 19. Частотные характеристики
- 20. Физический смысл частотных характеристик
- 21. Усилительное звено
- 22. Идеальное дифференцирующее звено
- 23. Форсирующее звено
- 24. Апериодическое звено первого порядка
- 25. Инерционно-форсирующее звено
- 26. Параллельное соединение звеньев
- 27. Последовательное соединение звеньев
- 28. Соединение с обратной связью
- 29. Передаточные функции замкнутой системы
- 30. Типовые законы регулирования. Пропорциональный закон регулирования
- 31. Интегральный закон регулирования
- 33. Пропорционально-дифференциальный закон регулирования
- 34. Пропорционально-интегральный закон регулирования
- 35. Пропорционально-интегрально-дифференциальный закон регулирования
- 36. Устойчивость линейных систем
- 37. Устойчивость линейного дифференциального уравнения с постоянными коэффициентами
- 38. Понятие фазового пространства
- 39. Фазовые траектории систем второго порядка
- 40. Автоматизация производственных процессов Задачи систем автоматизации и управления.
- 41. Системотехнические принципы построения государственной системы промышленных приборов и средств автоматизации (гсп)
- 42. Иерархическая структура гсп
- 43. Классификация изделий гсп по функциональному признаку
- 44. Уровни структуры гсп
- 45.Функциональный принцип построения изделий гсп. Функциональные группы издели
- Функциональный принцип построения изделий гсп. Функциональные группы изделий
- 2. Устройства центральной части.
- Номенклатура изделий гсп
- 1.3. Устройства получения информации о технологических параметрах процесса (датчики).
- 1.4. Устройства приема, преобразования и передачи информации по каналам связи.
- 1.5. Устройства преобразования, хранения, обработки, представления информации и формирование команд управления.
- 1.6. Исполнительные устройства.
- Конструктивно-технологический принцип изделий гсп
- Использование вычислительных устройств в системах автоматизации
- Иерархический, системный, функциональный подходы к построению систем автоматизации с использованием эвм
- Неймановский принцип программного управления
- Архитектура контроллера
- Выбор микропроцессорных средств
- Scada-системы. Уровни автоматизации
- Операционные системы реального времени
- Базы данных реального времени
- Функциональные и технические характеристики scada-систем
- Автоматизация объектов магистральных нефтепроводов
- Автоматизация нефтеперекачивающих станций
- Автоматизация резервуарных парков
- Телемеханизация магистральных нефтепроводов