Представление матриц поворота через углы Эйлера
Матричное описание вращения твёрдого тела упрощает многие операции; однако, для того, чтобы полностью описать ориентацию вращающегося твёрдого тела, необходимо использовать все девять элементов матрицы поворота. Непосредственно эти элементы не составляют полной системы обобщённых координат, с помощью которых можно описать ориентацию вращающегося твёрдого тела относительно абсолютной системы координат.
В качестве обобщённых координат можно использовать углы Эйлера j, q и y.
Таблица 3.1. Три системы углов Эйлера
| 1 | 2 | 3 |
Последова-тельность поворотов | На j вокруг оси OZ | На j вокруг оси OZ | На y вокруг оси OX |
На q вокруг оси OU | На q вокруг оси OV | На q вокруг оси OY | |
На y вокруг оси OW | На y вокруг оси OW | На j вокруг оси OZ |
Первая из систем углов Эйлера обычно используется при описании движения гироскопов и соответствует следующей последовательности поворотов (рис. 3.2):
-
Поворот на угол j вокруг оси OZ (Rz,).
-
Поворот на угол q вокруг повёрнутой оси OU (Ru,q).
-
Поворот на угол y вокруг повёрнутой оси OW (Rw,y).
Рисунок 3.2. Первая система углов Эйлера
Результирующая матрица поворота имеет следующий вид:
Rj,q,y = R z,j ×R u,q ×R w,y = =
=. (3-2)
Поворот, описываемый матрицей Rj,q,y , может быть также получен в результате выполнения последовательности следующих поворотов вокруг осей неподвижной системы координат: сначала на угол y вокруг оси OZ , затем на угол q вокруг оси OX, затем на угол j вокруг оси OZ.
На рисунке 3.3 показана вторая система углов Эйлера, определяемая следующей последовательностью поворотов:
-
Поворот на угол j вокруг оси OZ (Rz,j).
-
Поворот на угол q вокруг оси OV (Rv,q).
-
Поворот на угол y вокруг повёрнутой оси OW (Rw,y).
Результирующая матрица поворота имеет следующий вид:
Rj,q,y = R z,j ×R v,q ×R w,y = =
=. (3-3)
Поворот, описываемый матрицей Rj,q,y для этой системы углов Эйлера, может быть получен также в результате выполнения последовательных поворотов: на угол y вокруг оси OZ, на угол q вокруг оси OY, на угол j вокруг оси OZ.
Рисунок 3.3. Вторая система углов Эйлера
Ещё одну систему углов Эйлера составляют так называемые углы крена, тангажа и рыскания. Эти углы обычно применяются в авиации для описания движения самолётов.
Они соответствуют следующей последовательности поворотов:
-
Поворот на угол y вокруг оси OX (R x,y ) – рыскание.
-
Поворот на угол q вокруг оси OY (R y,q ) – тангаж.
-
Поворот на угол j вокруг оси OZ (R z,j ) – крен.
Результирующая матрица поворота имеет вид:
Rj,q,y = R z,j ×R y,q ×R x,y ==
= . (3-4)
Поворот, описываемый матрицей Rj,q,y в переменных «крен, тангаж, рыскание» может быть также получен в результате выполнения следующей последовательности поворотов вокруг осей абсолютной и подвижной систем координат: на угол j вокруг оси OZ, затем на угол q вокруг повёрнутой оси OV, на угол y вокруг повёрнутой оси OU (продольная ось аппарата – Z) (рис. 3.4).
Рисунок 3.4. Крен, тангаж, рысканье (третья система углов Эйлера)
- Основы робототехники. Устройство роботов План лекции.
- Лекция 1 Введение
- Классификация роботов по назначению
- Лекция 2 Кинематика манипулятора
- Матрицы сложных поворотов
- Лекция 3 Матрица поворота вокруг произвольной оси
- Представление матриц поворота через углы Эйлера
- Лекция 4 Геометрический смысл матриц поворота
- Свойства матриц поворота
- Однородные координаты и матрицы преобразований
- Лекция 5 Звенья, сочленения и их параметры
- Представление Денавита – Хартенберга
- Алгоритм формирования систем координат звеньев
- Для манипулятора Пума
- Лекция 6 Уравнения кинематики манипулятора
- Классификация манипуляторов
- Обратная задача кинематики
- Метод обратных преобразований
- Лекция 7 Геометрический подход
- Определение различных конфигураций манипулятора
- Решение обратной задачи кинематики для первых трех сочленений
- Решение для первого сочленения
- Решение для второго сочленения
- Лекция 8 Решение для третьего сочленения
- Решение обратной задачи кинематики для последних трех сочленений
- Решение для четвертого сочленения
- Решение для пятого сочленения
- Решение для шестого сочленения
- Лекция 9 Уравнения вида конфигурации для определения индикаторов конфигурации манипулятора
- Машинное моделирование
- Динамика манипулятора
- Метод Лагранжа-Эйлера
- Скорость произвольной точки звена манипулятора
- Лекция 10 Кинематическая энергия манипулятора
- Потенциальная энергия манипулятора
- Уравнение движения манипулятора
- Уравнения движения манипулятора с вращательными сочленениями
- Пример: двухзвенный манипулятор
- Лекция 11 Уравнения Ньютона-Эйлера
- Вращающиеся системы координат
- Лекция 12 Подвижные системы координат
- Кинематика звеньев
- Лекция 13 Рекуррентные уравнения динамики манипулятора
- Лекция 14 Планирование траекторий манипулятора
- Сглаженные траектории в пространстве присоединенных переменных
- Расчет 4-3-4 - траектории
- Лекция 15 Граничные условия для 4-3-4-траекторий
- Лекция 16 Управление манипуляторами промышленного робота
- Метод вычисления управляющих моментов
- Передаточная функция одного сочленения робота
- Лекция 17 Устройство позиционирования для одного сочленения манипулятора
- Критерии работоспособности и устойчивости
- Лекция 18 Компенсация в системах с цифровым управлением
- Зависимость момента от напряжения
- Управление манипулятором с переменной структурой
- Адаптивное управление
- Адаптивное управление по заданной модели
- Адаптивное управление с авторегрессивной моделью
- Лекция 19 Адаптивное управление по возмущению
- Независимое адаптивное управление движением
- Лекция 20 очувствление Введение
- Датчики измерения в дальней зоне
- Триангуляция
- Метод подсветки
- Лекция 21 Измерение расстояния по времени прохождения сигнала
- Очувствление в ближней зоне
- Индуктивные датчики
- Датчики Холла
- Лекция 22 Емкостные датчики
- Ультразвуковые датчики
- Оптические датчики измерения в ближней зоне
- Лекция 23 Тактильные датчики
- Дискретные пороговые датчики
- Аналоговые датчики
- Силомоментное очувствление
- Элементы датчика схвата, встроенного в запястье
- Выделение сил и моментов
- Лекция 24 Системы технического зрения
- Получение изображения
- Лекция 25 Методы освещения
- Стереоизображение
- Системы технического зрения высокого уровня
- Сегментация
- Проведение контуров и определение границ