Адаптивное управление по заданной модели
Наиболее легко реализуется адаптивное управление по заданной модели. Идея этого метода основана на выборе соответствующей заданной модели и алгоритма адаптации, по которым изменяются коэффициенты передач обратных связей на двигатели в реальной системе. Алгритм адаптации проводится на основе информации об ошибках между выходами заданной модели и выходами реальной системы. Общая блок-схема адаптивного управления системой по заданной модели приведена на рис. 18.2.
Рисунок 18.2.Общая блок-схема адаптивного управления системой
по заданной модели
В качестве заданной модели для каждой степени свободы манипулятора робота выбирается линейное дифференциальное уравнение второго порядка, не зависящее от времени. Манипулятор управляется путем настройки коэффициентов передачи обратной связи по положению и по скорости при отслеживании модели таким образом, чтобы его рабочие характеристики при замкнутом управлении совпадали с желаемыми рабочими характеристиками заданной модели. В результате такая схема адаптивного управления требует небольшого объема вычислений, которые могут выполняться с помощью недорогих микропроцессоров. Этот алгоритм адаптивного управления не требует ни сложных математических моделей динамической системы, ни предварительного знания внешних воздействий, таких, как величина нагрузки и др. Адаптивная схема, построенная по заданной модели, стабильно функционирует в широком диапазоне движений и нагрузок.
После определения вектора , описывающего динамику заданной модели, и вектора , описывающего динамику манипулятора, i-е сочленение заданной модели может быть описана следующим образом:
. (18-9)
Коэффициенты и определяются из частоты собственных колебаний и коэффициента демпфирования линейной системы второго порядка:
и . (18-10)
Учитывая, что членами высоких порядков можно пренебречь, уравнение динамики манипулятора для i-го сочленения может быть записано в виде:
, (18-11)
где и - медленно изменяющиеся во времени параметры системы.
- Основы робототехники. Устройство роботов План лекции.
- Лекция 1 Введение
- Классификация роботов по назначению
- Лекция 2 Кинематика манипулятора
- Матрицы сложных поворотов
- Лекция 3 Матрица поворота вокруг произвольной оси
- Представление матриц поворота через углы Эйлера
- Лекция 4 Геометрический смысл матриц поворота
- Свойства матриц поворота
- Однородные координаты и матрицы преобразований
- Лекция 5 Звенья, сочленения и их параметры
- Представление Денавита – Хартенберга
- Алгоритм формирования систем координат звеньев
- Для манипулятора Пума
- Лекция 6 Уравнения кинематики манипулятора
- Классификация манипуляторов
- Обратная задача кинематики
- Метод обратных преобразований
- Лекция 7 Геометрический подход
- Определение различных конфигураций манипулятора
- Решение обратной задачи кинематики для первых трех сочленений
- Решение для первого сочленения
- Решение для второго сочленения
- Лекция 8 Решение для третьего сочленения
- Решение обратной задачи кинематики для последних трех сочленений
- Решение для четвертого сочленения
- Решение для пятого сочленения
- Решение для шестого сочленения
- Лекция 9 Уравнения вида конфигурации для определения индикаторов конфигурации манипулятора
- Машинное моделирование
- Динамика манипулятора
- Метод Лагранжа-Эйлера
- Скорость произвольной точки звена манипулятора
- Лекция 10 Кинематическая энергия манипулятора
- Потенциальная энергия манипулятора
- Уравнение движения манипулятора
- Уравнения движения манипулятора с вращательными сочленениями
- Пример: двухзвенный манипулятор
- Лекция 11 Уравнения Ньютона-Эйлера
- Вращающиеся системы координат
- Лекция 12 Подвижные системы координат
- Кинематика звеньев
- Лекция 13 Рекуррентные уравнения динамики манипулятора
- Лекция 14 Планирование траекторий манипулятора
- Сглаженные траектории в пространстве присоединенных переменных
- Расчет 4-3-4 - траектории
- Лекция 15 Граничные условия для 4-3-4-траекторий
- Лекция 16 Управление манипуляторами промышленного робота
- Метод вычисления управляющих моментов
- Передаточная функция одного сочленения робота
- Лекция 17 Устройство позиционирования для одного сочленения манипулятора
- Критерии работоспособности и устойчивости
- Лекция 18 Компенсация в системах с цифровым управлением
- Зависимость момента от напряжения
- Управление манипулятором с переменной структурой
- Адаптивное управление
- Адаптивное управление по заданной модели
- Адаптивное управление с авторегрессивной моделью
- Лекция 19 Адаптивное управление по возмущению
- Независимое адаптивное управление движением
- Лекция 20 очувствление Введение
- Датчики измерения в дальней зоне
- Триангуляция
- Метод подсветки
- Лекция 21 Измерение расстояния по времени прохождения сигнала
- Очувствление в ближней зоне
- Индуктивные датчики
- Датчики Холла
- Лекция 22 Емкостные датчики
- Ультразвуковые датчики
- Оптические датчики измерения в ближней зоне
- Лекция 23 Тактильные датчики
- Дискретные пороговые датчики
- Аналоговые датчики
- Силомоментное очувствление
- Элементы датчика схвата, встроенного в запястье
- Выделение сил и моментов
- Лекция 24 Системы технического зрения
- Получение изображения
- Лекция 25 Методы освещения
- Стереоизображение
- Системы технического зрения высокого уровня
- Сегментация
- Проведение контуров и определение границ