Кинематика звеньев
Выведем уравнения, основывающиеся на полученных ранее соотношениях для подвижной системы координат и описывающие кинематику звеньев манипулятора в базовой системе координат.
Известно, что ортонормированная система координат связана с осью i-го сочленения (рис. 12.2).
Рисунок 12.2. Взаимосвязь систем координат,
имеющих начала в точках 0, 0* и 0'
Системы координат и связаны с -м и i-м звеньями и имеют начала в точках 0* и 0' соответственно. Положение точек 0' и 0* в базовой системе координат определяется векторами рi и рi-1 соответственно. Относительное положение точек 0' и 0* характеризуется в базовой системе координат вектором .
Предположим, что система координат имеет относительно базовой системы координат линейную скорость и угловую скорость . Пусть и - угловые скорости точки 0' в системах координат и соответственно. Тогда линейная скорость и угловая скорость координат относительно базовой системы координат с учетом равенства (12-3) определяются выражениями:
, (12-6)
, (12-7)
где означает скорость в движущейся системе координат . Линейное ускорение и угловое ускорение системы координат относительно базовой системы координат с учетом равенства (12-5) определяются выражениями:
(12-8)
(12-9)
Пользуясь равенством (11-13), находим угловое ускорение системы координат относительно системы координат :
. (12-10)
В результате равенство (12-9) можно представить в следующем виде:
. (12-11)
Как уже говорилось, системы координат и в соответствии с алгоритмом формирования систем координат звеньев манипулятора связаны с -м и i-м звеньями соответственно. Если i-е сочленение – поступательное, то i-е звено совершает поступательное движение вдоль оси со скоростью относительно -го звена. Если i-е сочленение – вращательное, то i-е звено вращается вокруг оси с угловой скоростью относительно -го звена.
Таким образом,
. (12-12)
Здесь - величина угловой скорости вращения i-го звена относительно системы координат . Аналогично:
. (12-13)
С учетом равенств (12-12) и (12-13) формулы (12-7) и (12-11) могут быть представлены в следующем виде:
; (12-14)
.(12-15)
С учетом равенства (11-8) линейные скорость и ускорение i-го звена относительно -го можно представить в следующем виде:
. (12-16)
.
(12-17)
Используя равенства (12-16) и (12-7), выражение (12-6) для линейной скорости i-го звена относительно базовой системы координат можно представить в виде:
.(12-18)
Выражение (12-8) для линейного ускорения i-го звена относительно базовой системы координат с учетом следующих свойств векторного произведения:
, (12-19)
(12-20)
и равенств (12-12) – (12-17) преобразуется к виду:
(12-35)
Заметим, что , если i-е сочленение – поступательное. Равенства (12-14), (12-15), (12-18) и (12-21), описывающие кинематику движения i-го звена, потребуется нам при выводе уравнений динамики манипулятора.
- Основы робототехники. Устройство роботов План лекции.
- Лекция 1 Введение
- Классификация роботов по назначению
- Лекция 2 Кинематика манипулятора
- Матрицы сложных поворотов
- Лекция 3 Матрица поворота вокруг произвольной оси
- Представление матриц поворота через углы Эйлера
- Лекция 4 Геометрический смысл матриц поворота
- Свойства матриц поворота
- Однородные координаты и матрицы преобразований
- Лекция 5 Звенья, сочленения и их параметры
- Представление Денавита – Хартенберга
- Алгоритм формирования систем координат звеньев
- Для манипулятора Пума
- Лекция 6 Уравнения кинематики манипулятора
- Классификация манипуляторов
- Обратная задача кинематики
- Метод обратных преобразований
- Лекция 7 Геометрический подход
- Определение различных конфигураций манипулятора
- Решение обратной задачи кинематики для первых трех сочленений
- Решение для первого сочленения
- Решение для второго сочленения
- Лекция 8 Решение для третьего сочленения
- Решение обратной задачи кинематики для последних трех сочленений
- Решение для четвертого сочленения
- Решение для пятого сочленения
- Решение для шестого сочленения
- Лекция 9 Уравнения вида конфигурации для определения индикаторов конфигурации манипулятора
- Машинное моделирование
- Динамика манипулятора
- Метод Лагранжа-Эйлера
- Скорость произвольной точки звена манипулятора
- Лекция 10 Кинематическая энергия манипулятора
- Потенциальная энергия манипулятора
- Уравнение движения манипулятора
- Уравнения движения манипулятора с вращательными сочленениями
- Пример: двухзвенный манипулятор
- Лекция 11 Уравнения Ньютона-Эйлера
- Вращающиеся системы координат
- Лекция 12 Подвижные системы координат
- Кинематика звеньев
- Лекция 13 Рекуррентные уравнения динамики манипулятора
- Лекция 14 Планирование траекторий манипулятора
- Сглаженные траектории в пространстве присоединенных переменных
- Расчет 4-3-4 - траектории
- Лекция 15 Граничные условия для 4-3-4-траекторий
- Лекция 16 Управление манипуляторами промышленного робота
- Метод вычисления управляющих моментов
- Передаточная функция одного сочленения робота
- Лекция 17 Устройство позиционирования для одного сочленения манипулятора
- Критерии работоспособности и устойчивости
- Лекция 18 Компенсация в системах с цифровым управлением
- Зависимость момента от напряжения
- Управление манипулятором с переменной структурой
- Адаптивное управление
- Адаптивное управление по заданной модели
- Адаптивное управление с авторегрессивной моделью
- Лекция 19 Адаптивное управление по возмущению
- Независимое адаптивное управление движением
- Лекция 20 очувствление Введение
- Датчики измерения в дальней зоне
- Триангуляция
- Метод подсветки
- Лекция 21 Измерение расстояния по времени прохождения сигнала
- Очувствление в ближней зоне
- Индуктивные датчики
- Датчики Холла
- Лекция 22 Емкостные датчики
- Ультразвуковые датчики
- Оптические датчики измерения в ближней зоне
- Лекция 23 Тактильные датчики
- Дискретные пороговые датчики
- Аналоговые датчики
- Силомоментное очувствление
- Элементы датчика схвата, встроенного в запястье
- Выделение сил и моментов
- Лекция 24 Системы технического зрения
- Получение изображения
- Лекция 25 Методы освещения
- Стереоизображение
- Системы технического зрения высокого уровня
- Сегментация
- Проведение контуров и определение границ