Скорость произвольной точки звена манипулятора
Для того, чтобы воспользоваться уравнениями Лагранжа-Эйлера, необходимо знать кинетическую энергию рассматриваемой физической системы, а следовательно, и скорости всех её точек.
Рассмотрим произвольную точку, неподвижную относительно i-го звена и заданную в системе координат i-го звена однородными координатами (рис. 9.2):
. (9-10)
Обозначим через координаты этой же точки относительно базовой системы координат. Матрица обозначает матрицу преобразования однородных координат, определяющую пространственное положение системы координат i-го звена относительно системы координат (i-1)-го звена, а -матрицу, определяющую связь между системой координат i-го звена и базовой системой координат.
Рисунок 9.2. Точка i-го звена
Тогда связь между и определяется соотношением:
, (9-11)
где . (9-12)
Если i-е сочленение – вращательное, то матрица имеет вид:
, (9-13)
Если i-ое сочленение – поступательное, то матрица имеет вид:
. (9-14)
В общем все ненулевые элементы матрицы являются функциями величин и , причём в зависимости от типа j-го сочленения или представляет собой присоединенную переменную этого сочленения, а остальные величины – известны (задаются конструкцией манипулятора). В выводах уравнений движения, как вращательных, так и поступательных, используется обобщённые координаты , , если i-е сочленение – вращательное и , если i-е сочленение – поступательное).
Скорость точки относительно базовой системы координат (при ):
. (9-15)
Частные произведение матрицы по переменным легко вычисляется с помощью матрицы , которая для вращательного сочленения имеет вид:
, (9-16а)
а для поступательного сочленения:
. (9-16б)
Используя эту матрицу, можно написать:
. (9-17)
Например, для манипулятора с вращательными сочленениями . Используя равенство (9-13), имеем:
Таким образом, для
(9-18)
По смыслу равенство (9-18) описывает изменение положения точек i-го звена, вызванное движением в j-м сочленении манипулятора. Для упрощения формул введём обозначение , с учетом которого равенство (9-18) можно представить для :
(9-19)
Используя введённое обозначение, формулу для можно записать в форме:
. (9-20)
Определяем величину, характеризующую эффект взаимодействия сочленений:
(9-21)
Например, для манипулятора вращательными сочленениями при и имеем:
.
- Основы робототехники. Устройство роботов План лекции.
- Лекция 1 Введение
- Классификация роботов по назначению
- Лекция 2 Кинематика манипулятора
- Матрицы сложных поворотов
- Лекция 3 Матрица поворота вокруг произвольной оси
- Представление матриц поворота через углы Эйлера
- Лекция 4 Геометрический смысл матриц поворота
- Свойства матриц поворота
- Однородные координаты и матрицы преобразований
- Лекция 5 Звенья, сочленения и их параметры
- Представление Денавита – Хартенберга
- Алгоритм формирования систем координат звеньев
- Для манипулятора Пума
- Лекция 6 Уравнения кинематики манипулятора
- Классификация манипуляторов
- Обратная задача кинематики
- Метод обратных преобразований
- Лекция 7 Геометрический подход
- Определение различных конфигураций манипулятора
- Решение обратной задачи кинематики для первых трех сочленений
- Решение для первого сочленения
- Решение для второго сочленения
- Лекция 8 Решение для третьего сочленения
- Решение обратной задачи кинематики для последних трех сочленений
- Решение для четвертого сочленения
- Решение для пятого сочленения
- Решение для шестого сочленения
- Лекция 9 Уравнения вида конфигурации для определения индикаторов конфигурации манипулятора
- Машинное моделирование
- Динамика манипулятора
- Метод Лагранжа-Эйлера
- Скорость произвольной точки звена манипулятора
- Лекция 10 Кинематическая энергия манипулятора
- Потенциальная энергия манипулятора
- Уравнение движения манипулятора
- Уравнения движения манипулятора с вращательными сочленениями
- Пример: двухзвенный манипулятор
- Лекция 11 Уравнения Ньютона-Эйлера
- Вращающиеся системы координат
- Лекция 12 Подвижные системы координат
- Кинематика звеньев
- Лекция 13 Рекуррентные уравнения динамики манипулятора
- Лекция 14 Планирование траекторий манипулятора
- Сглаженные траектории в пространстве присоединенных переменных
- Расчет 4-3-4 - траектории
- Лекция 15 Граничные условия для 4-3-4-траекторий
- Лекция 16 Управление манипуляторами промышленного робота
- Метод вычисления управляющих моментов
- Передаточная функция одного сочленения робота
- Лекция 17 Устройство позиционирования для одного сочленения манипулятора
- Критерии работоспособности и устойчивости
- Лекция 18 Компенсация в системах с цифровым управлением
- Зависимость момента от напряжения
- Управление манипулятором с переменной структурой
- Адаптивное управление
- Адаптивное управление по заданной модели
- Адаптивное управление с авторегрессивной моделью
- Лекция 19 Адаптивное управление по возмущению
- Независимое адаптивное управление движением
- Лекция 20 очувствление Введение
- Датчики измерения в дальней зоне
- Триангуляция
- Метод подсветки
- Лекция 21 Измерение расстояния по времени прохождения сигнала
- Очувствление в ближней зоне
- Индуктивные датчики
- Датчики Холла
- Лекция 22 Емкостные датчики
- Ультразвуковые датчики
- Оптические датчики измерения в ближней зоне
- Лекция 23 Тактильные датчики
- Дискретные пороговые датчики
- Аналоговые датчики
- Силомоментное очувствление
- Элементы датчика схвата, встроенного в запястье
- Выделение сил и моментов
- Лекция 24 Системы технического зрения
- Получение изображения
- Лекция 25 Методы освещения
- Стереоизображение
- Системы технического зрения высокого уровня
- Сегментация
- Проведение контуров и определение границ