Однородные координаты и матрицы преобразований
Поскольку трёхмерная матрица поворота не несёт информации о поступательном перемещении и используемом масштабе, вектор координат р= (рx, рy, рz)T в трёхмерном пространстве дополняют четвёртой координатой (или компонентой) так, что он принимает вид: = (wрx, wрy, wрz, w)T. Тогда вектор выражен в однородных координатах.
Описание точек трёхмерного пространства однородными координатами позволяет ввести в рассмотрение матричные преобразования, содержащие одновременно поворот, параллельный перенос, изменение масштаба и преобразование перспективы.
В общем случае изображение N-мерного вектора размерностью N+1 называется представлением в однородных координатах. При таком представлении преобразование N-мерного вектора производится в (N+1)-мерном пространстве, а физический N-мерный вектор получается делением однородных координат на (N+1)-ю компоненту .
Так, вектор р = (рx, рy, рz)T положения в трёхмерном пространстве в однородных координатах представляется расширенным вектором (wрx, wрy, wрz, w)T.
Физические координаты связанны с однородными следующим образом:
рx = , рy= , рz= ,
где w – четвёртая компонента вектора однородных координат (масштабирующий множитель).
Если w = 1, то однородные координаты вектора положения совпадают с его физическими координатами.
Однородная матрица преобразования представляет собой матрицу размерностью 4´4, которая преобразует вектор, выраженный в однородных координатах, из одной системы отсчёта в другую.
Однородная матрица преобразования может быть разбита на четыре подматрицы:
Т = =. (4-1)
Верхняя левая подматриа размерностью 3×3 представляет собой матрицу поворота; верхняя правая подматрица размерностью 3×1 представляет собой вектор положения начала координат повернутой системы отсчета относительно абсолютной; Нижняя левая подматрица размерностью 1×3 задает преобразование перспективы; четвертый диагональный элемент является глобальным масштабирующим множителем. Однородная матрица преобразования позволяет выявить геометрическую связь между связанной системой отсчёта OUVW и абсолютной системой OXYZ.
Если вектор р трехмерного пространства выражен в однородных координатах, т.е. , то, используя понятие матрицы преобразования можно сформировать однородную матрицу преобразования Тпов, задающую преобразование поворота и имеющую размерность 4×4. Однородная матрица поворота получается соответствующим расширением обычной матрицы поворота, имеющей размерность 3×3. Так, однородное представление для матриц (2-12) и (2-13) имеет следующий вид:
, ,
. (4-2)
Эти матрицы размерностью 4×4 называются однородными матрицами элементарных поворотов. Однородная матрица преобразования переводит вектор, заданый однородными координатами в системе отсчета OUVW, в абсолютную систему координат OXYZ, т.е. при :
(4-3)
и . (4-4)
- Основы робототехники. Устройство роботов План лекции.
- Лекция 1 Введение
- Классификация роботов по назначению
- Лекция 2 Кинематика манипулятора
- Матрицы сложных поворотов
- Лекция 3 Матрица поворота вокруг произвольной оси
- Представление матриц поворота через углы Эйлера
- Лекция 4 Геометрический смысл матриц поворота
- Свойства матриц поворота
- Однородные координаты и матрицы преобразований
- Лекция 5 Звенья, сочленения и их параметры
- Представление Денавита – Хартенберга
- Алгоритм формирования систем координат звеньев
- Для манипулятора Пума
- Лекция 6 Уравнения кинематики манипулятора
- Классификация манипуляторов
- Обратная задача кинематики
- Метод обратных преобразований
- Лекция 7 Геометрический подход
- Определение различных конфигураций манипулятора
- Решение обратной задачи кинематики для первых трех сочленений
- Решение для первого сочленения
- Решение для второго сочленения
- Лекция 8 Решение для третьего сочленения
- Решение обратной задачи кинематики для последних трех сочленений
- Решение для четвертого сочленения
- Решение для пятого сочленения
- Решение для шестого сочленения
- Лекция 9 Уравнения вида конфигурации для определения индикаторов конфигурации манипулятора
- Машинное моделирование
- Динамика манипулятора
- Метод Лагранжа-Эйлера
- Скорость произвольной точки звена манипулятора
- Лекция 10 Кинематическая энергия манипулятора
- Потенциальная энергия манипулятора
- Уравнение движения манипулятора
- Уравнения движения манипулятора с вращательными сочленениями
- Пример: двухзвенный манипулятор
- Лекция 11 Уравнения Ньютона-Эйлера
- Вращающиеся системы координат
- Лекция 12 Подвижные системы координат
- Кинематика звеньев
- Лекция 13 Рекуррентные уравнения динамики манипулятора
- Лекция 14 Планирование траекторий манипулятора
- Сглаженные траектории в пространстве присоединенных переменных
- Расчет 4-3-4 - траектории
- Лекция 15 Граничные условия для 4-3-4-траекторий
- Лекция 16 Управление манипуляторами промышленного робота
- Метод вычисления управляющих моментов
- Передаточная функция одного сочленения робота
- Лекция 17 Устройство позиционирования для одного сочленения манипулятора
- Критерии работоспособности и устойчивости
- Лекция 18 Компенсация в системах с цифровым управлением
- Зависимость момента от напряжения
- Управление манипулятором с переменной структурой
- Адаптивное управление
- Адаптивное управление по заданной модели
- Адаптивное управление с авторегрессивной моделью
- Лекция 19 Адаптивное управление по возмущению
- Независимое адаптивное управление движением
- Лекция 20 очувствление Введение
- Датчики измерения в дальней зоне
- Триангуляция
- Метод подсветки
- Лекция 21 Измерение расстояния по времени прохождения сигнала
- Очувствление в ближней зоне
- Индуктивные датчики
- Датчики Холла
- Лекция 22 Емкостные датчики
- Ультразвуковые датчики
- Оптические датчики измерения в ближней зоне
- Лекция 23 Тактильные датчики
- Дискретные пороговые датчики
- Аналоговые датчики
- Силомоментное очувствление
- Элементы датчика схвата, встроенного в запястье
- Выделение сил и моментов
- Лекция 24 Системы технического зрения
- Получение изображения
- Лекция 25 Методы освещения
- Стереоизображение
- Системы технического зрения высокого уровня
- Сегментация
- Проведение контуров и определение границ