Лекция 19 Адаптивное управление по возмущению
Адаптивное управление по возмущению отличается от других методов управления тем, что в нем учитываются все силы взаимодействия между различными сочленениями. Оптимальное управление базируется на линеаризованных уравнениях движения в окрестности номинальной траектории. Управляемая система характеризуется наличием прямой и обратной связей, которые могут быть рассчитаны отдельно и одновременно.
Прямая связь формирует номинальные моменты для компенсации всех сил взаимодействия между различными сочленениями при движении вдоль заданной траектории с помощью уравнений Ньютона-Эйлера, используемых в обратной задаче динамики манипулятора.
Обратная связь формирует моменты по возмущениям, которые уменьшают ошибки манипулятора по положению и по скорости до нуля вдоль заданной траектории.
При управлении линеаризованной возмущенной системой вдоль заданной траектории используется одношаговый оптимальный закон управления. Для получения необходимого управляющего воздействия параметры и коэффициенты передачи обратной связи пересчитываются и настраиваются в каждый дискретный период времени. Такой метод адаптивного управления позволяет свести задачу управления манипулятором от номинального управления к управлению линейной системой вдоль заданной траектории. В такой постановке задача управления формулируется как нахождение закона управления по обратной связи , такого, что замкнутая система управления асимптотически устойчива и описывает максимально приближенную к желаемой траекторию в широком диапазоне нагрузок в каждый момент времени.
Рисунок 19.1. Адаптивное управление по возмущению
Рекурсивный алгоритм определения параметров по методу наименьших квадратов находится путем минимизации экспоненциального критерия ошибки, в котором учитывается квадрат ошибки последних измерений в виде:
, (19-1)
где вектор ошибки определяется выражением:
, (19-2)
а - число измерений, используемых для оценки параметров .
Оптимальное управление, минимизирующее функционал ошибки, описывается выражением:
, (19-3)
где и - параметры системы, полученные с помощью алгоритма идентификации в k-й дискретный момент времени.
Весовой коэффициент настраивается для каждого вектора i-го параметра .
- Основы робототехники. Устройство роботов План лекции.
- Лекция 1 Введение
- Классификация роботов по назначению
- Лекция 2 Кинематика манипулятора
- Матрицы сложных поворотов
- Лекция 3 Матрица поворота вокруг произвольной оси
- Представление матриц поворота через углы Эйлера
- Лекция 4 Геометрический смысл матриц поворота
- Свойства матриц поворота
- Однородные координаты и матрицы преобразований
- Лекция 5 Звенья, сочленения и их параметры
- Представление Денавита – Хартенберга
- Алгоритм формирования систем координат звеньев
- Для манипулятора Пума
- Лекция 6 Уравнения кинематики манипулятора
- Классификация манипуляторов
- Обратная задача кинематики
- Метод обратных преобразований
- Лекция 7 Геометрический подход
- Определение различных конфигураций манипулятора
- Решение обратной задачи кинематики для первых трех сочленений
- Решение для первого сочленения
- Решение для второго сочленения
- Лекция 8 Решение для третьего сочленения
- Решение обратной задачи кинематики для последних трех сочленений
- Решение для четвертого сочленения
- Решение для пятого сочленения
- Решение для шестого сочленения
- Лекция 9 Уравнения вида конфигурации для определения индикаторов конфигурации манипулятора
- Машинное моделирование
- Динамика манипулятора
- Метод Лагранжа-Эйлера
- Скорость произвольной точки звена манипулятора
- Лекция 10 Кинематическая энергия манипулятора
- Потенциальная энергия манипулятора
- Уравнение движения манипулятора
- Уравнения движения манипулятора с вращательными сочленениями
- Пример: двухзвенный манипулятор
- Лекция 11 Уравнения Ньютона-Эйлера
- Вращающиеся системы координат
- Лекция 12 Подвижные системы координат
- Кинематика звеньев
- Лекция 13 Рекуррентные уравнения динамики манипулятора
- Лекция 14 Планирование траекторий манипулятора
- Сглаженные траектории в пространстве присоединенных переменных
- Расчет 4-3-4 - траектории
- Лекция 15 Граничные условия для 4-3-4-траекторий
- Лекция 16 Управление манипуляторами промышленного робота
- Метод вычисления управляющих моментов
- Передаточная функция одного сочленения робота
- Лекция 17 Устройство позиционирования для одного сочленения манипулятора
- Критерии работоспособности и устойчивости
- Лекция 18 Компенсация в системах с цифровым управлением
- Зависимость момента от напряжения
- Управление манипулятором с переменной структурой
- Адаптивное управление
- Адаптивное управление по заданной модели
- Адаптивное управление с авторегрессивной моделью
- Лекция 19 Адаптивное управление по возмущению
- Независимое адаптивное управление движением
- Лекция 20 очувствление Введение
- Датчики измерения в дальней зоне
- Триангуляция
- Метод подсветки
- Лекция 21 Измерение расстояния по времени прохождения сигнала
- Очувствление в ближней зоне
- Индуктивные датчики
- Датчики Холла
- Лекция 22 Емкостные датчики
- Ультразвуковые датчики
- Оптические датчики измерения в ближней зоне
- Лекция 23 Тактильные датчики
- Дискретные пороговые датчики
- Аналоговые датчики
- Силомоментное очувствление
- Элементы датчика схвата, встроенного в запястье
- Выделение сил и моментов
- Лекция 24 Системы технического зрения
- Получение изображения
- Лекция 25 Методы освещения
- Стереоизображение
- Системы технического зрения высокого уровня
- Сегментация
- Проведение контуров и определение границ