Лекция 2 Кинематика манипулятора
Предметом кинематики манипулятора является аналитическое описание геометрии движения манипулятора относительно некоторой заданной абсолютной системы координат без учёта сил и моментов, порождающих это движение. Таким образом, задачей кинематики является аналитическое описание пространственного расположения манипулятора в зависимости от времени и, в частности, установление связи между значениями присоединённых координат манипулятора и положением и ориентацией его схвата в декартовом пространстве.
Механический манипулятор можно рассматривать как разомкнутую цепь, которая состоит из нескольких твёрдых звеньев, последовательно соединенных вращательными или поступательными сочленениями, приводимых в движение силовыми приводами.
Основные задачи кинематики манипулятора:
-
Для конкретного манипулятора по известному вектору присоединённых углов (обобщённых координат q(t)=(q1(t),q2(t),...,qn(t))g) и заданным геометрическим параметром звеньев (n – число степеней свободы) определить положение и ориентацию схвата манипулятора относительно абсолютной системы координат.
-
При известных геометрических параметрах звеньев найти все возможные векторы присоединённых переменных манипулятора, обеспечивающие заданное положение и ориентацию схвата относительно абсолютной систем координат.
Первую из этих задач принято называть прямой, а вторую – обратной задачей кинематики манипулятора.
Error: Reference source not found
Рисунок 2.1. Схема взаимосвязи прямой и обратной задач кинематики
Для описания взаимного пространственного положения двух смежных звеньев используют однородную матрицу преобразования размерностью 4´4.
Прямая задача кинематики
Для систематического и обобщённого подхода к описанию и представлению расположения звеньев манипулятора (исполнительных механизмов робота) относительно заданной абсолютной системы координат применяют матричную и векторную алгебру.
Звенья манипулятора могут совершать вращательное и/или поступательное движение относительно абсолютной системы координат, оси которой параллельны осям сочленений звеньев. Прямая задача кинематики сводится к определению матрицы преобразования, устанавливающей связь между абсолютной и связанной системами координат. Для описания вращательного движения связанной системы отсчёта относительно абсолютной используется матрица поворота (вращения) размерностью 3´3. Для поступательного движения используется матрица однородного преобразования размерностью 4´4.
Матрицы поворота (вращения).
Матрицу поворота размерностью 3´3 можно определить как матрицу преобразования трёхмерного вектора положения в евклидовом пространстве, переводящую его из повернутой (связанной) системы отсчёта OUVW в абсолютную систему координат OXYZ. На рис.2.2 показаны две правые прямоугольные системы координат: система координат OXYZ с осями OX, OY, OZ и система OUVW с осями OU, OV, OW. Начала этих систем совпадают и расположены в точке О.
Рисунок 2.2. Абсолютная и связанная системы координат
Система OXYZ фиксирована в трёхмерном пространстве и принята за абсолютную. Система координат OUVW вращается относительно абсолютной и физически рассматривается как связанная система координат. Это означает, что она жёстко связанна с твёрдым телом (например, самолётом) и движется вместе с ним.
Пусть (ix, jy, kz) и (iu, jv, kw) – единичные векторы, направленные вдоль своей системы OXYZ и OUVW соответственно. Некоторую точку P в пространстве можно характеризовать координатами относительно любой из указанных систем:
puvw = (pu, pv, pw)T и pxyz = (px, py, pz)T (2-1)
где T - означает операцию транспонирования.
Задача состоит в том, чтобы определить матрицу R размерностью 3´3, которая преобразует координаты puvw в координаты вектора p системе OXYZ после того, как система OUVW будет повёрнута, т.е.:
pxyz = Rpuvw . (2-2)
Заметим, что физически точка p вращается вместе с системой координат OUVW.
Из определения компонент вектора имеем:
puvw = pu×iu+pv×jv+pw×kw, (2-3)
где pu, pv, и pw представляют собой составляющие вектора p вдоль осей OU, ОV, ОW соответственно, или проекции вектора p на эти оси. Используя определение скалярного произведения и равенства (2-3), получаем:
px = ix × p = ix × iu × pu + ix × jv × pv + ix × kw × pw,
py = jy × p = iy × iu × pu + jy × jv × pv + jy × kw × pw,
pz = kz × p = kz × iu × pu + kz × jv × pv + kz × kw × pw. (2-4)
или в матричной форме:
. (2-5)
С учётом этого выражения матрица R в равенстве (2-2) примет вид:
. (2-6)
Аналогично, координаты puvw можно получить из координат pxyz:
puvw = Q ×pxyz , (2-7)
или
. (2-8)
Поскольку операция скалярного произведения коммутативна, то из соотношений (2-6)…(2-8) следует
Q = R-1 = RT, (2-9)
QR = RTR = R-1×R = I3, (2-10)
где I3 – единичная матрица размерностью 3´3.
Преобразование, определяемое формулой (2-9) или (2-10), называется ортогональным преобразованием.
Особый интерес представляет матрица поворота системы OUVW относительно каждой из трёх основных системы OXYZ. Если положение системы OUVW в пространстве изменяется за счёт поворота этой системы на угол a вокруг оси OX, то в системе отсчёта OXYZ изменяются и координаты (px, py, pz)T точки (pu, pv, pw). Соответствующая матрица преобразования Rx,a называется матрицей поворота вокруг оси OX на угол a. Основываясь на полученных выше результатах, для матрицы Rx,a имеем:
pxyz = R x,a ×puvw, (2-11)
причём ix iu, и
. (2-12)
Рисунок 2.3. Вращающаяся система координат
Аналогично, трёхмерные (размерностью 3´3) матрицы поворота вокруг оси OY на угол j и вокруг оси OZ на угол q имеют соответственно вид (рис.2.3).
, . (2-13)
Матрицы Rx,a, Ry,j и Rz,q называют матрицами элементарных поворотов.
- Основы робототехники. Устройство роботов План лекции.
- Лекция 1 Введение
- Классификация роботов по назначению
- Лекция 2 Кинематика манипулятора
- Матрицы сложных поворотов
- Лекция 3 Матрица поворота вокруг произвольной оси
- Представление матриц поворота через углы Эйлера
- Лекция 4 Геометрический смысл матриц поворота
- Свойства матриц поворота
- Однородные координаты и матрицы преобразований
- Лекция 5 Звенья, сочленения и их параметры
- Представление Денавита – Хартенберга
- Алгоритм формирования систем координат звеньев
- Для манипулятора Пума
- Лекция 6 Уравнения кинематики манипулятора
- Классификация манипуляторов
- Обратная задача кинематики
- Метод обратных преобразований
- Лекция 7 Геометрический подход
- Определение различных конфигураций манипулятора
- Решение обратной задачи кинематики для первых трех сочленений
- Решение для первого сочленения
- Решение для второго сочленения
- Лекция 8 Решение для третьего сочленения
- Решение обратной задачи кинематики для последних трех сочленений
- Решение для четвертого сочленения
- Решение для пятого сочленения
- Решение для шестого сочленения
- Лекция 9 Уравнения вида конфигурации для определения индикаторов конфигурации манипулятора
- Машинное моделирование
- Динамика манипулятора
- Метод Лагранжа-Эйлера
- Скорость произвольной точки звена манипулятора
- Лекция 10 Кинематическая энергия манипулятора
- Потенциальная энергия манипулятора
- Уравнение движения манипулятора
- Уравнения движения манипулятора с вращательными сочленениями
- Пример: двухзвенный манипулятор
- Лекция 11 Уравнения Ньютона-Эйлера
- Вращающиеся системы координат
- Лекция 12 Подвижные системы координат
- Кинематика звеньев
- Лекция 13 Рекуррентные уравнения динамики манипулятора
- Лекция 14 Планирование траекторий манипулятора
- Сглаженные траектории в пространстве присоединенных переменных
- Расчет 4-3-4 - траектории
- Лекция 15 Граничные условия для 4-3-4-траекторий
- Лекция 16 Управление манипуляторами промышленного робота
- Метод вычисления управляющих моментов
- Передаточная функция одного сочленения робота
- Лекция 17 Устройство позиционирования для одного сочленения манипулятора
- Критерии работоспособности и устойчивости
- Лекция 18 Компенсация в системах с цифровым управлением
- Зависимость момента от напряжения
- Управление манипулятором с переменной структурой
- Адаптивное управление
- Адаптивное управление по заданной модели
- Адаптивное управление с авторегрессивной моделью
- Лекция 19 Адаптивное управление по возмущению
- Независимое адаптивное управление движением
- Лекция 20 очувствление Введение
- Датчики измерения в дальней зоне
- Триангуляция
- Метод подсветки
- Лекция 21 Измерение расстояния по времени прохождения сигнала
- Очувствление в ближней зоне
- Индуктивные датчики
- Датчики Холла
- Лекция 22 Емкостные датчики
- Ультразвуковые датчики
- Оптические датчики измерения в ближней зоне
- Лекция 23 Тактильные датчики
- Дискретные пороговые датчики
- Аналоговые датчики
- Силомоментное очувствление
- Элементы датчика схвата, встроенного в запястье
- Выделение сил и моментов
- Лекция 24 Системы технического зрения
- Получение изображения
- Лекция 25 Методы освещения
- Стереоизображение
- Системы технического зрения высокого уровня
- Сегментация
- Проведение контуров и определение границ