Лекция 14 Планирование траекторий манипулятора
Планирование траекторий движения манипулятора – это задача выбора закона управления, обеспечивающего движение манипулятора вдоль некоторой заданной траектории. Перед началом движения манипулятора важно знать:
-
существуют ли на его пути какие-либо препятствия;
-
накладываются ли какие-либо ограничения на траекторию схвата.
В зависимости от ответов на эти вопросы выбирается один из четырех типов управления манипулятором (табл. 14.1).
Таблица 14.1. Типы управления манипулятором
|
Препятствия на пути манипулятора
| ||
Присутствуют
|
Отсутствуют
| ||
Ограничения на траекторию манипулятора |
Присутствуют
| I. Автономное планирование траектории, обеспечиваю-щее обход препятствий, плюс регулирование дви-жения вдоль выбранной траектории в процессе работы манипулятора | II. Автономное плани-рование траектории плюс регулирование движения вдоль выб-ранной траектории в процессе работы манипулятора |
Отсутствуют
| III. Позиционное управление плюс обнаружение и обход препятствий в процессе движения | IV. Позиционное управление |
Рассмотрим планирование траектории манипулятора при отсутствии препятствий (II и IV тип). Задача состоит в разработке математического аппарата для выбора и описания желаемого движения манипулятора между начальной и конечной точками траектории.
При планировании траекторий обычно применяется один из двух подходов:
-
Задается точный набор ограничений (например, непрерывность и гладкость) на положение, скорость и ускорение обобщенных координат манипулятора в некоторых (называемых узловыми) точках траектории. Планировщик траекторий после этого выбирает из некоторого класса функций (как правило, среди многочленов, степень которых не превышает некоторое заданное n) функцию, проходящую через узловые точки и удовлетворяющую в них заданным ограничениям. Определение ограничений и планирование траектории производится в присоединенных координатах.
-
Задается желаемая траектория манипулятора в виде некоторой аналитически описываемой функции, как, например, прямолинейную траекторию в декартовых координатах. Планировщик производит аппроксимацию заданной траектории в присоединенных или декартовых координатах.
Планирование в присоединенных переменных обладает тремя преимуществами:
-
задается поведение переменных, непосредственно управляемых в процессе движения манипулятора;
-
планирование траектории может осуществляться в реальном времени;
-
траектории в присоединенных переменных легче планировать.
-
Должны быть сведены к минимуму бесполезные движения типа «блуждания».
Рисунок 14.1. Блок-схема планировщика траекторий
Недостаток – сложность определения положения звеньев и схвата в процессе движения. Это необходимо для предотвращения столкновения с препятствием.
В общем случае основной алгоритм формирования узловых точек траектории в пространстве присоединенных переменных весьма прост:
;
цикл: ждать следующего момента коррекции;
;
=заданное положение манипулятора в пространстве присоединенных переменных
в момент времени ;
Если , выйти из процедуры;
Выполнить цикл.
Здесь – интервал времени между двумя последовательными моментами коррекции параметров движения манипулятора.
Из алгоритма видно, что все вычисления производятся для определения траекторной функции , которая должна обновляться в каждой точке коррекции параметров движения манипулятора.
На планируемую траекторию накладывается четыре ограничения:
-
Узловые точки должны легко вычисляться нерекуррентным способом.
-
Промежуточные положения должны определяться однозначно.
-
Должна быть обеспечена непрерывность присоединенных координат и их двух первых производных, чтобы планируемая траектория в пространстве присоединенных переменных была гладкой.
Перечисленным ограничениям удовлетворяют траектории, описываемые последовательностями полиномов.
В общем случае планирование траекторий в декартовых координатах состоит из двух последовательных шагов:
-
формирование последовательности узловых точек в декартовом пространстве, расположенных вдоль планируемой траектории схвата;
-
выбор некоторого класса функций, аппроксимирующих участки траектории между узловыми точками в соответствии с некоторым критерием (например, прямые, дуги круга, параболы и т.п.).
Первый подход позволяет обеспечить высокую точность движения вдоль заданной траектории. Однако, при отсутствии датчиков положения схвата в декартовых координатах, для перевода декартовых координат в присоединенные требуется большое количество вычислений, что замедляет время движения манипулятора. Поэтому используется второй подход – декартовы координаты узловых точек преобразуются в соответствующие присоединенные координаты с последующим проведением интерполяции в пространстве присоединенных переменных полиномами низкой степени. Это сокращает вычисления и позволяет учесть ограничения динамики манипулятора. Но точность движения снижается.
- Основы робототехники. Устройство роботов План лекции.
- Лекция 1 Введение
- Классификация роботов по назначению
- Лекция 2 Кинематика манипулятора
- Матрицы сложных поворотов
- Лекция 3 Матрица поворота вокруг произвольной оси
- Представление матриц поворота через углы Эйлера
- Лекция 4 Геометрический смысл матриц поворота
- Свойства матриц поворота
- Однородные координаты и матрицы преобразований
- Лекция 5 Звенья, сочленения и их параметры
- Представление Денавита – Хартенберга
- Алгоритм формирования систем координат звеньев
- Для манипулятора Пума
- Лекция 6 Уравнения кинематики манипулятора
- Классификация манипуляторов
- Обратная задача кинематики
- Метод обратных преобразований
- Лекция 7 Геометрический подход
- Определение различных конфигураций манипулятора
- Решение обратной задачи кинематики для первых трех сочленений
- Решение для первого сочленения
- Решение для второго сочленения
- Лекция 8 Решение для третьего сочленения
- Решение обратной задачи кинематики для последних трех сочленений
- Решение для четвертого сочленения
- Решение для пятого сочленения
- Решение для шестого сочленения
- Лекция 9 Уравнения вида конфигурации для определения индикаторов конфигурации манипулятора
- Машинное моделирование
- Динамика манипулятора
- Метод Лагранжа-Эйлера
- Скорость произвольной точки звена манипулятора
- Лекция 10 Кинематическая энергия манипулятора
- Потенциальная энергия манипулятора
- Уравнение движения манипулятора
- Уравнения движения манипулятора с вращательными сочленениями
- Пример: двухзвенный манипулятор
- Лекция 11 Уравнения Ньютона-Эйлера
- Вращающиеся системы координат
- Лекция 12 Подвижные системы координат
- Кинематика звеньев
- Лекция 13 Рекуррентные уравнения динамики манипулятора
- Лекция 14 Планирование траекторий манипулятора
- Сглаженные траектории в пространстве присоединенных переменных
- Расчет 4-3-4 - траектории
- Лекция 15 Граничные условия для 4-3-4-траекторий
- Лекция 16 Управление манипуляторами промышленного робота
- Метод вычисления управляющих моментов
- Передаточная функция одного сочленения робота
- Лекция 17 Устройство позиционирования для одного сочленения манипулятора
- Критерии работоспособности и устойчивости
- Лекция 18 Компенсация в системах с цифровым управлением
- Зависимость момента от напряжения
- Управление манипулятором с переменной структурой
- Адаптивное управление
- Адаптивное управление по заданной модели
- Адаптивное управление с авторегрессивной моделью
- Лекция 19 Адаптивное управление по возмущению
- Независимое адаптивное управление движением
- Лекция 20 очувствление Введение
- Датчики измерения в дальней зоне
- Триангуляция
- Метод подсветки
- Лекция 21 Измерение расстояния по времени прохождения сигнала
- Очувствление в ближней зоне
- Индуктивные датчики
- Датчики Холла
- Лекция 22 Емкостные датчики
- Ультразвуковые датчики
- Оптические датчики измерения в ближней зоне
- Лекция 23 Тактильные датчики
- Дискретные пороговые датчики
- Аналоговые датчики
- Силомоментное очувствление
- Элементы датчика схвата, встроенного в запястье
- Выделение сил и моментов
- Лекция 24 Системы технического зрения
- Получение изображения
- Лекция 25 Методы освещения
- Стереоизображение
- Системы технического зрения высокого уровня
- Сегментация
- Проведение контуров и определение границ