Ультразвуковые датчики
Характеристики всех рассмотренных датчиков измерения в ближней зоне сильно зависят от материала объектов измерения. Эта зависимость может быть в значительной степени уменьшена путем использования ультразвуковых датчиков (рис. 22.3).
Рисунок 22.3. Ультразвуковой датчик измерения в ближней зоне
Основным элементом датчика является электроакустический преобразователь, в качестве которого часто используется пьезоэлектрический керамический элемент. Подложка из смолы защищает преобразователь от влажности, пыли и других внешних воздействий. Она служит также как переходное акустическое сопротивление. Поскольку один и тот же преобразователь используется обычно как для передачи, так и для приема сигналов, для обнаружения объектов в ближней зоне необходимо быстрое демпфирование акустической энергии. Это достигается путем применения акустических поглотителей и развязкой преобразователя от корпуса. Конструкция корпуса позволяет получить узкий акустический поток, дающий мощный направленный сигнал.
Для лучшего понимания работы ультразвукового датчика измерителя в ближней зоне надо провести анализ сигналов, используемых как для передачи, так и для приема акустической энергии (рис. 22.4).
Рисунок 22.4. Сигналы, используемые в ультразвуковом датчике измерения
в ближней зоне
Сигнал А является запорным сигналом, используемым для управления посылаемыми сигналами.
Сигнал В содержит выходной и отраженный сигналы.
Сигнал С – выделяет сигналы передачи или приема. Для того, чтобы установить различие между посылаемыми и принимаемыми сигналами, вводятся временные окна (сигнал D). Временной интервал является минимальным временем измерения, а - максимальным. Эти временные интервалы соответствуют прохождению определенных расстояний со скоростью распространения звука в используемой рабочей среде.
После получения отраженного сигнала (в то время, когда сигнал D имеет максимальное значение), вырабатывается сигнал Е, величина которого принимает нулевое значение после окончания действия передающего импульса А.
Сигнал F вырабатывается при появлении положительного импульса Е и сбрасывается в случае отсутствия сигнала Е и появления импульса А.
Таким образом, сигнал F будет иметь максимальное значение при наличии объекта на расстоянии, определяемом параметрами сигнала D, т.е. сигнал F является выходным сигналом ультразвукового датчика, работающего в бинарном режиме.
- Основы робототехники. Устройство роботов План лекции.
- Лекция 1 Введение
- Классификация роботов по назначению
- Лекция 2 Кинематика манипулятора
- Матрицы сложных поворотов
- Лекция 3 Матрица поворота вокруг произвольной оси
- Представление матриц поворота через углы Эйлера
- Лекция 4 Геометрический смысл матриц поворота
- Свойства матриц поворота
- Однородные координаты и матрицы преобразований
- Лекция 5 Звенья, сочленения и их параметры
- Представление Денавита – Хартенберга
- Алгоритм формирования систем координат звеньев
- Для манипулятора Пума
- Лекция 6 Уравнения кинематики манипулятора
- Классификация манипуляторов
- Обратная задача кинематики
- Метод обратных преобразований
- Лекция 7 Геометрический подход
- Определение различных конфигураций манипулятора
- Решение обратной задачи кинематики для первых трех сочленений
- Решение для первого сочленения
- Решение для второго сочленения
- Лекция 8 Решение для третьего сочленения
- Решение обратной задачи кинематики для последних трех сочленений
- Решение для четвертого сочленения
- Решение для пятого сочленения
- Решение для шестого сочленения
- Лекция 9 Уравнения вида конфигурации для определения индикаторов конфигурации манипулятора
- Машинное моделирование
- Динамика манипулятора
- Метод Лагранжа-Эйлера
- Скорость произвольной точки звена манипулятора
- Лекция 10 Кинематическая энергия манипулятора
- Потенциальная энергия манипулятора
- Уравнение движения манипулятора
- Уравнения движения манипулятора с вращательными сочленениями
- Пример: двухзвенный манипулятор
- Лекция 11 Уравнения Ньютона-Эйлера
- Вращающиеся системы координат
- Лекция 12 Подвижные системы координат
- Кинематика звеньев
- Лекция 13 Рекуррентные уравнения динамики манипулятора
- Лекция 14 Планирование траекторий манипулятора
- Сглаженные траектории в пространстве присоединенных переменных
- Расчет 4-3-4 - траектории
- Лекция 15 Граничные условия для 4-3-4-траекторий
- Лекция 16 Управление манипуляторами промышленного робота
- Метод вычисления управляющих моментов
- Передаточная функция одного сочленения робота
- Лекция 17 Устройство позиционирования для одного сочленения манипулятора
- Критерии работоспособности и устойчивости
- Лекция 18 Компенсация в системах с цифровым управлением
- Зависимость момента от напряжения
- Управление манипулятором с переменной структурой
- Адаптивное управление
- Адаптивное управление по заданной модели
- Адаптивное управление с авторегрессивной моделью
- Лекция 19 Адаптивное управление по возмущению
- Независимое адаптивное управление движением
- Лекция 20 очувствление Введение
- Датчики измерения в дальней зоне
- Триангуляция
- Метод подсветки
- Лекция 21 Измерение расстояния по времени прохождения сигнала
- Очувствление в ближней зоне
- Индуктивные датчики
- Датчики Холла
- Лекция 22 Емкостные датчики
- Ультразвуковые датчики
- Оптические датчики измерения в ближней зоне
- Лекция 23 Тактильные датчики
- Дискретные пороговые датчики
- Аналоговые датчики
- Силомоментное очувствление
- Элементы датчика схвата, встроенного в запястье
- Выделение сил и моментов
- Лекция 24 Системы технического зрения
- Получение изображения
- Лекция 25 Методы освещения
- Стереоизображение
- Системы технического зрения высокого уровня
- Сегментация
- Проведение контуров и определение границ