Матрицы сложных поворотов
Описание последовательности конечных поворотов относительно основных осей системы OXYZ можно получить путём перемножения матриц элементарных поворотов. Поскольку операция перемножения матриц некоммутативна, здесь существенна последовательность выполнения поворотов.
Например, матрица поворота, представляющего собой результат последовательного выполнения поворотов сначала на угол a вокруг оси OX, затем на угол q вокруг оси OZ, затем на угол j вокруг оси OY имеет вид:
R = R y,j ×R z,q ×R x,a = =
=, (2-14)
где Сj = cosj ; Sj = sinj ; Cq = cosq ; Sq = sinq ; Ca = cosa ; Sa = sina.
Она отличается от матрицы, описывающей результат поворота сначала на угол j вокруг оси OY, затем q вокруг оси OZ и, наконец, на угол a относительно оси OX. В этом случае результирующая матрица поворота имеет вид:
R = R x,a ×R z,q × R y,j = =
=. (2-15)
Наряду с вращением относительно осей абсолютной системы координат OXYZ подвижная система отсчёта OUVW может совершать поворот вокруг собственных осей. В этом случае результирующая матрица поворота может быть получена с использованием следующих правил:
-
Вначале обе системы координат совпадают, и, следовательно, матрица поворота представляет собой единичную матрицу размерностью 3´3.
-
Если подвижная система координат OUVW совершает поворот вокруг одной из основных осей системы OXYZ, матрицу предыдущего результирующего поворота надо умножить слева на соответствующую матрицу элементарного поворота.
-
Если подвижная система координат OUVW совершает поворот вокруг одной из своих основных осей, матрицу предыдущего результирующего поворота надо умножить справа на соответствующую матрицу элементарного поворота.
Пример. Требуется найти матрицу поворота, являющегося результатом последовательного выполнения поворотов сначала на угол j, вокруг оси OY, затем на угол q вокруг оси OW на угол a вокруг оси OU.
Решение:
R = R y,j × I3 ×R w,q ×R u,a = R y,j × I3 ×R w,q ×R u,a =
= =
=.
Матрица результирующего поворота такая же, как (2-14), но последовательность поворотов отличается в последовательности, результатом которой является выражение (2-14).
- Основы робототехники. Устройство роботов План лекции.
- Лекция 1 Введение
- Классификация роботов по назначению
- Лекция 2 Кинематика манипулятора
- Матрицы сложных поворотов
- Лекция 3 Матрица поворота вокруг произвольной оси
- Представление матриц поворота через углы Эйлера
- Лекция 4 Геометрический смысл матриц поворота
- Свойства матриц поворота
- Однородные координаты и матрицы преобразований
- Лекция 5 Звенья, сочленения и их параметры
- Представление Денавита – Хартенберга
- Алгоритм формирования систем координат звеньев
- Для манипулятора Пума
- Лекция 6 Уравнения кинематики манипулятора
- Классификация манипуляторов
- Обратная задача кинематики
- Метод обратных преобразований
- Лекция 7 Геометрический подход
- Определение различных конфигураций манипулятора
- Решение обратной задачи кинематики для первых трех сочленений
- Решение для первого сочленения
- Решение для второго сочленения
- Лекция 8 Решение для третьего сочленения
- Решение обратной задачи кинематики для последних трех сочленений
- Решение для четвертого сочленения
- Решение для пятого сочленения
- Решение для шестого сочленения
- Лекция 9 Уравнения вида конфигурации для определения индикаторов конфигурации манипулятора
- Машинное моделирование
- Динамика манипулятора
- Метод Лагранжа-Эйлера
- Скорость произвольной точки звена манипулятора
- Лекция 10 Кинематическая энергия манипулятора
- Потенциальная энергия манипулятора
- Уравнение движения манипулятора
- Уравнения движения манипулятора с вращательными сочленениями
- Пример: двухзвенный манипулятор
- Лекция 11 Уравнения Ньютона-Эйлера
- Вращающиеся системы координат
- Лекция 12 Подвижные системы координат
- Кинематика звеньев
- Лекция 13 Рекуррентные уравнения динамики манипулятора
- Лекция 14 Планирование траекторий манипулятора
- Сглаженные траектории в пространстве присоединенных переменных
- Расчет 4-3-4 - траектории
- Лекция 15 Граничные условия для 4-3-4-траекторий
- Лекция 16 Управление манипуляторами промышленного робота
- Метод вычисления управляющих моментов
- Передаточная функция одного сочленения робота
- Лекция 17 Устройство позиционирования для одного сочленения манипулятора
- Критерии работоспособности и устойчивости
- Лекция 18 Компенсация в системах с цифровым управлением
- Зависимость момента от напряжения
- Управление манипулятором с переменной структурой
- Адаптивное управление
- Адаптивное управление по заданной модели
- Адаптивное управление с авторегрессивной моделью
- Лекция 19 Адаптивное управление по возмущению
- Независимое адаптивное управление движением
- Лекция 20 очувствление Введение
- Датчики измерения в дальней зоне
- Триангуляция
- Метод подсветки
- Лекция 21 Измерение расстояния по времени прохождения сигнала
- Очувствление в ближней зоне
- Индуктивные датчики
- Датчики Холла
- Лекция 22 Емкостные датчики
- Ультразвуковые датчики
- Оптические датчики измерения в ближней зоне
- Лекция 23 Тактильные датчики
- Дискретные пороговые датчики
- Аналоговые датчики
- Силомоментное очувствление
- Элементы датчика схвата, встроенного в запястье
- Выделение сил и моментов
- Лекция 24 Системы технического зрения
- Получение изображения
- Лекция 25 Методы освещения
- Стереоизображение
- Системы технического зрения высокого уровня
- Сегментация
- Проведение контуров и определение границ