Лекция 9 Уравнения вида конфигурации для определения индикаторов конфигурации манипулятора
Полученное решение обратной задачи кинематики для манипулятора типа Пума не единственно и зависит от индикаторов конфигурации, задаваемых исследователем. Эти индикаторы можно определить, зная присоединяемые углы.
Для индикатора РУКА, следуя определению ПРАВОЙ/ЛЕВОЙ руки, уравнение конфигурации можно записать в виде:
,
(9-1)
где - проекция вектора p (равенство (7-7)) на плоскость -третий столбец матрицы и .
Возможны следующие варианты:
-
Если , реализована конфигурация ПРАВОЙ руки.
-
Если , реализована конфигурация ЛЕВОЙ руки.
-
Если , конфигурация манипулятора одновременно соответсвует определению как ПРАВОЙ, так и ЛЕВОЙ руки: манипулятор находится внутри цилиндра радиусом d2 (рис. 7.1). В этом случае принимается для определённости, что реализована конфигурация правой руки (РУКА=+1).
Поскольку знаменатель выражения (9-1) всегда положителен, определение ЛЕВОЙ/ПРАВОЙ конфигурации сводится к определению знака числителя :
РУКА=, (9-2)
где функция sign определена равенством (8-14). Подстановкой первой и второй компонент вектора р из равенства (7-7) в равенство (9-2) получаем:
РУКА=, (9-3)
Следовательно, из уравнения (9-3) значение индикатора РУКА для ПРАВОЙ/ЛЕВОЙ конфигурации манипулятора устанавливается выражением:
РУКА= (9-4)
При выводе уравнения конфигурации для индикатора ЛОКОТЬ используем определение ВЕРХНЕЙ/НИЖНЕЙ руки. Взяв и индикатор РУКА из табл. 7.1, получим уравнение конфигурации для индикатора ЛОКОТЬ, использующее знак второй компоненты вектора положения матрицы и индикатор РУКА:
(9-5)
Для индикатора ЗАПЯСТЬЕ, следуя определению возможных конфигураций запястья (КИСТЬ ВВЕРХ/ВНИЗ), сформируем скалярное произведение единичных векторов s и у5 (или z4).
(9-6)
Если , значение индикатора ЗАПЯСТЬЕ можно определить из выражения:
. (9-7)
Объединив равенства (9-6) и (9-7), получим:
(9-8)
Полученные уравнения конфигурации позволяют проверить решения обратной задачи кинематики. С их помощью при решении прямой задачи кинематики вычисляются значения индикаторов конфигурации, которые затем используются для решения обратной задачи кинематики (рис. 9.1).
- Основы робототехники. Устройство роботов План лекции.
- Лекция 1 Введение
- Классификация роботов по назначению
- Лекция 2 Кинематика манипулятора
- Матрицы сложных поворотов
- Лекция 3 Матрица поворота вокруг произвольной оси
- Представление матриц поворота через углы Эйлера
- Лекция 4 Геометрический смысл матриц поворота
- Свойства матриц поворота
- Однородные координаты и матрицы преобразований
- Лекция 5 Звенья, сочленения и их параметры
- Представление Денавита – Хартенберга
- Алгоритм формирования систем координат звеньев
- Для манипулятора Пума
- Лекция 6 Уравнения кинематики манипулятора
- Классификация манипуляторов
- Обратная задача кинематики
- Метод обратных преобразований
- Лекция 7 Геометрический подход
- Определение различных конфигураций манипулятора
- Решение обратной задачи кинематики для первых трех сочленений
- Решение для первого сочленения
- Решение для второго сочленения
- Лекция 8 Решение для третьего сочленения
- Решение обратной задачи кинематики для последних трех сочленений
- Решение для четвертого сочленения
- Решение для пятого сочленения
- Решение для шестого сочленения
- Лекция 9 Уравнения вида конфигурации для определения индикаторов конфигурации манипулятора
- Машинное моделирование
- Динамика манипулятора
- Метод Лагранжа-Эйлера
- Скорость произвольной точки звена манипулятора
- Лекция 10 Кинематическая энергия манипулятора
- Потенциальная энергия манипулятора
- Уравнение движения манипулятора
- Уравнения движения манипулятора с вращательными сочленениями
- Пример: двухзвенный манипулятор
- Лекция 11 Уравнения Ньютона-Эйлера
- Вращающиеся системы координат
- Лекция 12 Подвижные системы координат
- Кинематика звеньев
- Лекция 13 Рекуррентные уравнения динамики манипулятора
- Лекция 14 Планирование траекторий манипулятора
- Сглаженные траектории в пространстве присоединенных переменных
- Расчет 4-3-4 - траектории
- Лекция 15 Граничные условия для 4-3-4-траекторий
- Лекция 16 Управление манипуляторами промышленного робота
- Метод вычисления управляющих моментов
- Передаточная функция одного сочленения робота
- Лекция 17 Устройство позиционирования для одного сочленения манипулятора
- Критерии работоспособности и устойчивости
- Лекция 18 Компенсация в системах с цифровым управлением
- Зависимость момента от напряжения
- Управление манипулятором с переменной структурой
- Адаптивное управление
- Адаптивное управление по заданной модели
- Адаптивное управление с авторегрессивной моделью
- Лекция 19 Адаптивное управление по возмущению
- Независимое адаптивное управление движением
- Лекция 20 очувствление Введение
- Датчики измерения в дальней зоне
- Триангуляция
- Метод подсветки
- Лекция 21 Измерение расстояния по времени прохождения сигнала
- Очувствление в ближней зоне
- Индуктивные датчики
- Датчики Холла
- Лекция 22 Емкостные датчики
- Ультразвуковые датчики
- Оптические датчики измерения в ближней зоне
- Лекция 23 Тактильные датчики
- Дискретные пороговые датчики
- Аналоговые датчики
- Силомоментное очувствление
- Элементы датчика схвата, встроенного в запястье
- Выделение сил и моментов
- Лекция 24 Системы технического зрения
- Получение изображения
- Лекция 25 Методы освещения
- Стереоизображение
- Системы технического зрения высокого уровня
- Сегментация
- Проведение контуров и определение границ