Сглаженные траектории в пространстве присоединенных переменных
Планирование сглаженных траекторий в пространстве присоединенных переменных следует проводить с учетом следующих соображений:
-
В момент поднятия объекта манипулирования движение схвата должно быть направлено от объекта;
-
Допустимое движение ухода задается на нормали к поверхности, на которой расположен объект, траектория схвата должна проходить через эту точку.
-
Для участка подхода к заданному конечному положению: схват должен пройти через точку подхода, расположенную на нормали к поверхности, на которую должен быть помещен объект манипулирования.
-
Траектория движения манипулятора должна проходить через четыре заданные точки: начальную точку, точку ухода, точку подхода и конечную точку (рис. 9.2).
-
На траекторию накладываются условия:
-
начальная точка: заданы скорость и ускорение (обычно нулевые);
-
точки ухода: непрерывность положения, скорости и ускорения;
-
точка подхода: непрерывность положения, скорости и ускорения;
-
конечная точка: заданы скорость и ускорение (обычно нулевые).
-
-
Значения присоединенных координат должны лежать в пределах физических и геометрических ограничений каждого из сочленений манипулятора.
-
При определении времени движения необходимо учесть:
-
время прохождения начального и конечного участков траектории выбираются с учетом требуемой скорости подхода и ухода схвата, и представляет собой некоторую константу, зависящую от характеристик силовых приводов сочленений
-
время движения по среднему участку траектории определяется максимальными значениями присоединенных скоростей и ускорений каждого сочленения.
-
Рисунок 14.2. Ограничения по положению для траектории в пространстве присоединенных переменных
Для проведения интерполяции траектории по заданным узловым точкам нужно выбрать полиномную функцию степени не выше n.
Например, описание i–го сочленения полиномом седьмой степени:
, (14-1)
в котором неизвестные коэффициенты определяются из заданных граничных условий и условий непрерывности. Однако полином такой высокой степени трудно вычислить. Нужно разбить траекторию движения на несколько участков и интерполировать каждый участок полиномом низкой степени.
Например, траектория изменения каждой присоединенной переменной разбивается на три участка (4-3-4). Первый участок, задающий движение между начальной точкой и точкой ухода, описывается полиномом четвертой степени. Второй (средний) участок – между точкой ухода и точкой подхода – описывается полиномом третьей степени. Последний участок – полиномом четвертой степени.
- Основы робототехники. Устройство роботов План лекции.
- Лекция 1 Введение
- Классификация роботов по назначению
- Лекция 2 Кинематика манипулятора
- Матрицы сложных поворотов
- Лекция 3 Матрица поворота вокруг произвольной оси
- Представление матриц поворота через углы Эйлера
- Лекция 4 Геометрический смысл матриц поворота
- Свойства матриц поворота
- Однородные координаты и матрицы преобразований
- Лекция 5 Звенья, сочленения и их параметры
- Представление Денавита – Хартенберга
- Алгоритм формирования систем координат звеньев
- Для манипулятора Пума
- Лекция 6 Уравнения кинематики манипулятора
- Классификация манипуляторов
- Обратная задача кинематики
- Метод обратных преобразований
- Лекция 7 Геометрический подход
- Определение различных конфигураций манипулятора
- Решение обратной задачи кинематики для первых трех сочленений
- Решение для первого сочленения
- Решение для второго сочленения
- Лекция 8 Решение для третьего сочленения
- Решение обратной задачи кинематики для последних трех сочленений
- Решение для четвертого сочленения
- Решение для пятого сочленения
- Решение для шестого сочленения
- Лекция 9 Уравнения вида конфигурации для определения индикаторов конфигурации манипулятора
- Машинное моделирование
- Динамика манипулятора
- Метод Лагранжа-Эйлера
- Скорость произвольной точки звена манипулятора
- Лекция 10 Кинематическая энергия манипулятора
- Потенциальная энергия манипулятора
- Уравнение движения манипулятора
- Уравнения движения манипулятора с вращательными сочленениями
- Пример: двухзвенный манипулятор
- Лекция 11 Уравнения Ньютона-Эйлера
- Вращающиеся системы координат
- Лекция 12 Подвижные системы координат
- Кинематика звеньев
- Лекция 13 Рекуррентные уравнения динамики манипулятора
- Лекция 14 Планирование траекторий манипулятора
- Сглаженные траектории в пространстве присоединенных переменных
- Расчет 4-3-4 - траектории
- Лекция 15 Граничные условия для 4-3-4-траекторий
- Лекция 16 Управление манипуляторами промышленного робота
- Метод вычисления управляющих моментов
- Передаточная функция одного сочленения робота
- Лекция 17 Устройство позиционирования для одного сочленения манипулятора
- Критерии работоспособности и устойчивости
- Лекция 18 Компенсация в системах с цифровым управлением
- Зависимость момента от напряжения
- Управление манипулятором с переменной структурой
- Адаптивное управление
- Адаптивное управление по заданной модели
- Адаптивное управление с авторегрессивной моделью
- Лекция 19 Адаптивное управление по возмущению
- Независимое адаптивное управление движением
- Лекция 20 очувствление Введение
- Датчики измерения в дальней зоне
- Триангуляция
- Метод подсветки
- Лекция 21 Измерение расстояния по времени прохождения сигнала
- Очувствление в ближней зоне
- Индуктивные датчики
- Датчики Холла
- Лекция 22 Емкостные датчики
- Ультразвуковые датчики
- Оптические датчики измерения в ближней зоне
- Лекция 23 Тактильные датчики
- Дискретные пороговые датчики
- Аналоговые датчики
- Силомоментное очувствление
- Элементы датчика схвата, встроенного в запястье
- Выделение сил и моментов
- Лекция 24 Системы технического зрения
- Получение изображения
- Лекция 25 Методы освещения
- Стереоизображение
- Системы технического зрения высокого уровня
- Сегментация
- Проведение контуров и определение границ