logo search
Лекции ТЭС

Основные показатели и характеристики усилителя

1. Коэффициенты передачи по напряжению, по току и по мощности в полосе пропускания.

.

Часто используют значения коэффициента передачи в децибеллах

.

2. Полоса пропускания усилителя по уровню половинной мощности ( по амплитуде) 2 f0,7, нижняя и верхняя граничные частоты: fн , fв .

3. Входное сопротивление – сопротивление между входными зажимами усилителя при подключенной нагрузке.

4. Выходное сопротивление усилителя – сопротивление между выходными зажимами вместе с известным сопротивлением источника сигнала.

5. КПД для усилителя мощности.

Важным свойством усилителя является неискаженная передача входного сигнала в нагрузку. Искажения сигналов в усилителе обусловлены двумя факторами:

1. Наличием в схеме усилителя реактивных элементов и межэлектродных емкостей в активном элементе , что приводит к так называемым частотным (линейным) искажениям сигналов. Различные частотные составляющие входного сигнала усиливаются по-разному, приводя к изменению формы сигнала. Линейные (амплитудные и фазовые) искажения определяются неравномерностью АЧХ и нелинейностью ФЧХ усилителя. Мерой амплитудных искажений является отношение коэффициента передачи усилителя на заданной частоте к коэффициенту передачи в полосе пропускания.

М=K(f)/Ko .

При М=1 амплитудные искажения отсутствуют, М>1 характеризует подъем АЧХ, М<1 характеризует спад АЧХ.

Нелинейность ФЧХ приводит к изменениям соотношений между фазами составляющих сигнала, и в конечном итоге к искажению формы сигнала. Частотные  искажения называются линейными, т.к. они обусловлены линейными элементами схемы. Равномерность АЧХ и линейность ФЧХ усилителя в полосе сигнала характеризует передачу без искажений.

2. Наличие нелинейного элемента в усилителе приводит к появлению в спектре выходного сигнала составляющих с частотами, которых не было в исходном входном сигнале. Искажения, вызванные этими составляющими, называются нелинейными. Оценка нелинейных искажений производится по формуле

,  

где Um,1 - амплитуда первой гармоники усиливаемого сигнала, Um,n – амплитуды высших гармонических составляющих  сигнала на выходе усилителя.

Характеристикой, позволяющей выбрать режим работы с минимальными нелинейными искажениями, является амплитудная характеристика усилителя - зависимость амплитуды первой гармоники выходного сигнала от амплитуды гармонического сигнала на входе. Примеры АХ:

Амплитуды входного сигнала Um,вх,min и Um,вх,max определяют динамический диапазон усилителя.

Для импульсных усилителей важной является переходная g(t) (или импульсная h(t)) характеристика усилителя. Это зависимость значения выходного напряжения от времени при скачкообразном изменении входного напряжения. При прохождении импульсного сигнала переходная характеристика позволяет оценить степень искажения сигнала на выходе. Типичный вид переходной характеристики УНЧ показан ниже.

Импульсная характеристика усилителя определяется как производная от переходной:

Она связана парой преобразований Фурье с частотной характеристикой усилителя:

 

Чем шире частотная характеристика, тем короче переходные процессы в усилителе; так нижняя граничная частота УНЧ отвечает за неискаженную передачу медленно меняющейся части усиливаемого сигнала (например, полочки в импульсе прямоугольной формы), а верхняя граничная частота – за неискаженную передачу быстро-меняющейся части сигнала (например, фронтов прямоугольных импульсов

Основные сведения и классификация

Обратная связь (ОС) в усилителе характеризует передачу на его вход колебаний с выхода отдельного каскада или с выхода всего усилителя в целом. Применение ОС позволяет улучшить характеристики усилителя.

По характеру передачи сигнала с выхода на вход различают:

Элементы схемы, создающие ОС, образуют цепь ОС, которая представляет собой чаще всего пассивный линейный четырехполюсник, вход которого подсоединен к выходу усилителя, а выход – ко входу усилителя.

В зависимости от того, возрастает или уменьшается сигнал на входе усилителя, обратные связи делятся на:

Поскольку фаза как выходного сигнала, так сигнала с цепи ОС зависят от частоты, то считать ОС положительной или отрицательной можно лишь в некотором диапазоне частот. Сильное изменение частоты сигнала (за пределы рабочей полосы усилителя) может привести к смене знака ОС.

В усилителях чаще всего специально вводят ООС в рабочей полосе частот. С внутренней ОС мы встретились при анализе каскада с ОЭ, где транзистор характеризовался параметром обратной связи h12,э . Как было показано, отличие от нуля этого параметра приводит к зависимости от него всех внешних параметров транзистора и усилителя в целом, например, влиянию сопротивления нагрузки на входное сопротивление и сопротивления источника сигнала на выходное сопротивление усилителя. В зависимости от того, каким образом подается сигнал на вход усилителя с цепи ОС и в цепь ОС с выхода усилителя, различают:

Первое слово характеризует связь со входом усилителя: при последовательной ОС с цепи ОС на вход усилителя подается напряжение, а при параллельной - ток.

Второе слово характеризует связь цепи ОС с выходом усилителя: если связь по напряжению, то выходной сигнал цепи ОС пропорционален выходному напряжению, если связь по току, то выходной сигнал цепи ОС пропорционален выходному току

Параметры усилителя с ООС

 

Рассмотрим вывод соотношений для коэффициентов передачи по напряжению и току, входного и выходного сопротивления усилителя и с цепью ООС в рабочей области частот усилителя.

Последовательная ООС по напряжению

Блок-схема такой системы представлена на рис.2

Рис.2

Для определения параметров усилителя с ОС удобно представить усилитель в виде ИНУН, а цепь ОС в виде делителя напряжения (рис.3).

Рис.3

При соблюдении неравенств RГ ,R2,ос<<Rвх , Rн ,R1,ос>>Rвых можно считать, что          

Um,вх =Em,Г , Koc=R2,oc/(R2,oc+R1,oc) и I' m,выхIm,вых .

Тогда:

откуда:

где индекс 0 означает принадлежность параметра собственно усилителю с ОС без учета сопротивлений источника сигнала и нагрузки.

Коэффициент передачи по току определяется здесь как

.

Таким образом данный тип включения ООС изменяет собственный коэффициент передачи по напряжению усилителя с ОС в соответсвиии с основным линейным соотношением (3), коэффициент передачи по току практически не изменяется.

По определению входное сопротивление усилителя с ОС равно:

.

Так как:  

,

то:

,                      (4)

то есть последовательная ООС увеличивает входное сопротивление системы в (1+KKос) раз.

При определении выходного сопротивления генератор сигнала закорачивается (Еm,Г =0 с сохранением его внутреннего сопротивления RГ ), а вместо нагрузки включается эквивалентный источник тока с амплитудой Im,экв=Im,вых , заменяющий действие входного источника. Получаем схему рис.4.

Рис.4

По определению .

Амплитуда выходного напряжения в схеме рис.4 определится как сумма ;

так как здесь U' m,вх = – Um,oc , то .

Отсюда получаем

.

Таким образом ООС по напряжению уменьшает выходное сопротивление усилителя с ОС в (1+KKос) раз.

Если неравенства RГ<<Rвх и Rн>>Rвых не выполняются, то формулы для коэффициентов передачи, входного и выходного сопротивления несколько усложняются.

В этом случае                             

Пример: каскад с общим коллектором (ОК) как усилитель с последовательной ООС по напряжению (рис.5).

                        Рис.5                                                        Рис.6

На рис.6 показана схема этого каскада для переменных токов в области средних частот. Схему рис.6 можно более явно представить в виде каскада ОЭ со 100% последовательной ООС. Это видно из рис.7.

Рис.7

Из входной части рис.7 следует:

,

т.к. Um,oc =Um,э можно говорить о 100% (Koc=1) последовательной ООС по напряжению.

Следовательно, коэффициент передачи по напряжению:

,

где SRэ=Kоэ – коэффициент передачи по напряжению каскада ОЭ, если в коллекторной цепи стоит сопротивление равное Rэ , S – крутизна ДПХ транзистора с ОЭ в рабочей точке;

Так, если SRэ=20, при Rэ=100 Ом и h11,э=200 Ом, имеем:

Kок=20/21=0,95 , Rвх,ок=200(1+20)=4200 Ом , Rвых,ок=100/(1+20)=4,76 Ом

Таким образом, каскад с ОК (или эмитерный повторитель) имеет очень малое выходное сопротивление и большое входное сопротивление, в связи с этим рабочая полоса частот его в (1+SRэ) больше полосы аналогичного каскада с ОЭ. Поэтому этот каскад используют в качестве буферного между каскадами ОЭ, осуществляя согласование по напряжению между каскадами. Кроме того, его ставят в качестве входных каскадов усилителей, т.к. он имеет большое входное сопротивление, и в качестве выходных каскадов усилителей напряжения из-за малого выходного сопротивления.

Последовательная обратная связь по току

Обобщенная структурная схема приведена на рис.8.

Рис.8

При выполнении условий RГ , Rвых,ос<<Rвх , Rн >Rвых , Rвх,ос <<Rвых можно

считать, что U' m,вых Um,вых , Im,вх ос =Im,вых ; тогда Um,ос=KocI m,вых , причем Кос имеет размерность сопротивления.

Выразим амплитуду напряжения ОС через амплитуду выходного напряжения:

Тогда коэффициент передачи по напряжению системы будет иметь вид:

                                              (6)

а входное сопротивление

.                                      (7)

Чтобы вывести соотношение для выходного сопротивления построим эквивалентную схему (см. рис.9), где входное сопротивление цепи ОС показано отдельно.

Рис.9

Отсюда:

                      (8)

 

Таким образом, последовательная ООС увеличивает входное и выходное сопротивления усилителя с ОС, что позволяет использовать его как хороший источник тока, управляемый напряжением (ИТУН).

Пример: каскад ОЭ с сопротивлением в эмиттерной цепи (ОЭ+Rэ). Схема каскада приведена на рис.10.

Рис.10

Так как  

,

а Im,вых =Im,к видим, что здесь имеет место последовательная ООС по току с коэффициентом ОС Kос=Rэ ; т.к. Im,б << Im,к и Rвых,ок=Rк , можно считать .

Отсюда получаем, учитывая что каскад с ОЭ имеет Kоэ=SRк ,  

Обычно в схемах величину Rэ выбирают в пределах 10% от Rк .

Параллельная ООС по напряжению

При параллельной ООС на входе усилителя имеет место вычитание из входного тока Im,вх  тока цепи ОС Im,ос. Обобщенная блок-схема показана на рис.11.

Рис.11

Коэффициент передачи тока собственно усилителя  , а цепи ОС  .

Естественно ожидать, что основное линейное соотношение (3) следует применить к коэффициенту передачи по току. Действительно, при выполнении неравенств Rвх,ос>>Rвых можно считать I' m,вых=Im,вых . Поэтому можно считать I m,вых=Ki I'm,вх ; в свою очередь

,

где Koc,i=Koc,1Rвых – коэффициент передачи по току цепи ОС.

Таким образом получаем  

.

Из схемы рис.11 видно, что как со стороны входа, так и со стороны выхода усилитель и цепь ОС соединены параллельно. Следовательно входное сопротивление системы должно быть меньше собственного входного сопротивления усилителя . Если провести выкладки, аналогичные тому, как это было сделано выше, получим:  

Таким образом, наилучшей моделью такой системы является модель ИНУТ.

Пример: каскад с коллекторной ОС (рис.12).

Рис.12

Цепь ОС представляет собой резистор Roc , величина тока через который пропорциональна выходному напряжению:

;

таким образом:  

,

и коэффициент усиления по току усилителя с ОС и его входное и выходное сопротивления равны:

        .

Этот вид ОС используется не только по переменному сигналу, но и для стабилизации рабочей точки транзистора.

Параллельная обратная связь по току

Обобщенная структурная схема приведена на рис.13.

Рис.13

Коэффициенты передачи тока усилителя и цепи ОС соответственно равны:

.

В этом случае по аналогии можно записать:

.

В качестве примера внутренней ОС подобного типа рассмотрим транзистор с общей базой как транзистор с ОЭ и 100% ООС (рис.14,а).

Рис.14,а

Представим схему рис.14,а в следующем виде:

Рис.14,б

Из рис.14,б видно,что:  

,

следовательно транзистор ОЭ охвачен ООС по току (Ki,oc=1). Поэтому:

.

Часто каскад на транзисторе с ОБ называют токовым повторителем. Входное и выходное сопротивление транзистора с ОБ соответственно равны:

Принципиальная схема простейшего каскада с ОБ представлена на рис.15.

Рис.15

Здесь резисторы Rэ и Rк обеспечивают режим транзистора по постоянному току. Коэффициент передачи по напряжению каскада такой же, как и у каскада с общим эмиттером, однако он не инвертирует фазу, т.е. Kоб =+SRк , коэффициент передачи по току равен примерно единице, входное сопротивление его мало, а выходное практически такое же, как у каскада с ОЭ, т.к. Rк>>Rвых,об .

Характеристики усилителей с ООС

 

Введение ООС в усилительные схемы приводит к ряду положительных результатов. Рассмотрим некоторые из них.

Стабилизация коэффициента передачи

Пусть усилитель без ООС имеет коэффициент передачи K, нестабильность его, обусловленная различными дестабилизирующими факторами, оценивается величиной K. Тогда при использовании ООС в соответствии с основным линейным соотношением можно записать:

Поскольку в цепях ОС обычно используются достаточно стабильные линейные пассивные элементы, Koc можно считать величиной постоянной. Поэтому:

.

Таким образом нестабильность усилителя с ООС  K* меньше нестабильности усилителя без ООС.

При глубокой ООС, т.е. при KKoc>>1 , имеем: 

.

Следовательно, усилитель с глубокой ООС, имеет коэффициент передачи, определяющийся только цепью ОС, и поэтому очень стабилен.

Ослабление нелинейных искажений

Нелинейные искажения в усилителе обусловлены выходом мгновенных значений сигналов за пределы линейной части амплитудной характеристики усилителя Um,вых(Um,вх).

Поскольку введение отрицательной ОС уменьшает коэффициент передачи в (1+KKос) раз, во столько же раз может быть увеличено входное напряжение, соответствующее началу нелинейного участка амплитудной характеристики.

На рис.16 показаны амплитудные характеристики усилителя без ООС и с ООС.

Рис.16

Частотные характеристики усилителя с ООС

Самое наглядное представление о влиянии на АЧХ ООС дает пример с глубокой ООС. Пусть усилитель без ОС имеет частотный коэффициент передачи  , а цепь ОС -  . Тогда при ООС:

При K()Koc(w )>>1 в достаточно широкой полосе частот, имеем

Если цепь ОС состоит из резисторов, то при глубокой ООС можно получить частотную характеристику усилителя с равномерной АЧХ в широкой полосе частот. В качестве примера можно вспомнить каскад с ОК, который имеет K*=1 из-за глубокой (100%-ной) ОС, и следовательно очень широкую полосу частот. Принято считать для данного типа активного элемента постоянной величину произведения коэффициента усиления в рабочей области на полосу частот этой области. Если каскад при полосе  f имеет Kо , то для него является постоянной величина П= Kо  f . При уменьшении Kо полоса f увеличивается и наоборот. Это отражено на рис.17, где Kо(fв-fн)=K*o(f*в-f*н).

Рис.17

В современной схемотехнике ОС используются очень широко. Часто применяют несколько цепей ОС, охватывая ими или отдельные каскады или цепочки каскадов. Знание теории ОС позволяет выявить появление возможных паразитных положительных ОС, приводящих к неустойчивой работе усилителя, и успешно бороться с этим явлением.

Ряд современных усилителей, называемых операционными, применяются только с использованием различных ООС, что позволяет получать устройства с заданными характеристиками.

Таблица

В таблице даны основные параметры схем с отрицательными обратными связями.

Тип ОС 

Последоват.  ООС по напряжению

Последоват.  ООС по  току 

Параллельная ООС по напряжению

Параллельная ООС по току 

K*

K

K

K*i

Ki

Ki

R*вх

Rвх(1+KKос)

Rвх(1+KKос)

R*вых

Rвых(1+KKос)

Rвых (1+Kос,iKi)

Модель

ИНУН

ИТУН

ИНУТ

ИТУТ

Идентификация типа ОС 

ХХ на входе КЗ на выходе

ХХ на входе ХХ на выходе

КЗ на входе КЗ на выходе

КЗ на входе ХХ на выходе