Информация, сообщение, сигнал
Информацией называют любые сведения, являющиеся объектом передачи, распределения, преобразования, хранения и использования.
Сообщением называется форма представления информации. Это может быть текст (последовательность символов), звуковое давление, яркость и цвет, данные на выходе вычислительной машины и др.
Чтобы передать информацию, надо передать содержащие эту информацию сообщения.
Как источником, так и получателем информации, может быть человек (оператор), технические устройства - датчики, преобразовывающие информацию в сигнал и наоборот.
При использовании радиотехнических средств сообщение представляет собой электрический сигнал (ток или напряжение). Информация, а следовательно и сообщение, являются, как правило, медленно меняющимися функциями времени. Для лучшей передачи ее на большие расстояния используются "быстрые" радиоволны, называемые несущими колебаниями (по аналогии с техническими средствами доставки письменных сообщений: автомобили, самолеты и др., позволяющими увеличить скорость доставки).
Процесс переноса сообщения на несущее колебание называется модуляцией. Сообщение при этом называется радиосигналом. На приемном конце системы связи из радиосигнала снова получают сообщение.Этот процесс называется демодуляцией или детектированием.
Диапазон радиоволн и частот
Выбор длины волны несущего колебания определяется типом передаваемой информации, типом модуляции, обеспечением устойчивой и надежной связи. Выбор того или иного диапазона для каждой конкретной системы связи определяется следующими факторами: особенностью распространения электромагнитных волн данного диапазона, характером сообщения и помех, размерами антенны.
В таблице 1 даны общепринятые обозначения диапазонов радиоволн, их частоты и длины волн.
Таблица 1
№ | Диапазон | Условное обозначение диапазона частот | Наименование по длине волны | |
частот | длин волн | |||
1 | 3-30Гц | 105-104км | КНЧ (ELF) - крайне низкие частоты | Декаметрические |
2 | 30-300Гц | 104-103км |
| Мегаметрические |
3 | 300-3000Гц | 103-102км | УНЧ (ULF) - ультра низкие частоты | Гектокилометровые |
4 | 3-30кГц | 100-10км | ОНЧ (VLF)- очень низкие частоты | Сверхдлинные (мириаметровые) |
5 | 30-300кГц | 10-1км | НЧ (LF) - низкие частоты | Длинные (километровые) |
6 | 300-3000кГц | 1000-100м | СЧ (MF) - средние частоты | Средние (гектометровые) |
7 | 3-30МГц | 100-10м | ВЧ (HF) - высокие частоты | Короткие (декаметровые) |
8 | 30-300МГц | 10-1м | ОВЧ (VHF) - очень высокие частоты | Метровые, ультра короткие |
9 | 300-3000МГц | 100-10см | УВЧ (UHF) - ультра высокие частоты | Дециметровые |
10 | 3-30ГГц | 10-1см | СВЧ (SHF) - сверх высокие частоты | Сантиметровые |
11 | 30-300ГГц | 10-1мм | КВЧ (EHF)- крайне высокие частоты | Миллиметровые |
12 | 300-3000ГГц | 1-0,1мм | ГВЧ - гипервысокие частоты | Дециметровые |
13 | Оптические диапазоны волн. |
Длиной волны называется расстояние, которое проходит волна за один временной период: =сT=с/f , где с- скорость света, Т - период, f - частота колебания. На первых этапах развития радиотехники связь осуществлялась с помощью волн сверхдлинного и длинного диапазонов. Они имеют два существенных недостатка, во-первых, необходимость большой мощности передающего устройства из-за сильного поглощения волны при ее распространении над земной поверхностью и, во-вторых, невозможность передавать сообщения, скорость изменения которых соизмерима со скоростью изменения несущего колебания.
В радиовещании широкое применение нашли средние волны. В этом диапазоне осуществляется наиболее устойчивый прием, однако трудно обеспечить большую дальность (меньшая дифракционная способность по сравнению с более длинными волнами). Поэтому в этом диапазоне работает преимущественно местное радиовещание в зоне с радиусом в несколько сотен километров. Однако в России есть очень мощные станции этого диапазона, обслуживающие и большую территорию.
Диапазон коротких волн позволяет обеспечить большую дальность действия при относительно малой мощности передатчика и направленном излучении антенны. Основным недостатком этого диапазона являются так называемые замирания - колебания уровня принимаемого сигнала, что приводит к искажению принятого сообщения. Исследования показали, что имеются оптимальные длины волн для различных часов суток и времени года. Короткие волны успешно применяют в радиовещании, радиотелеграфии на магистральных линиях связи, в морской и авиационной радионавигации.
Освоение диапазонов 8-12 позволило развить такие области как телевидение и космическая связь. Благодаря распространению волн только в пределах прямой видимости и отсутствию поверхностной волны практически полностью исключены явления интеренференции волн и, следовательно, искажения сообщений. Из-за высокой несущей частоты в этих диапазонах можно разместить большое число несущих,т.е. передавать большое число различных сообщений независимо друг от друга.
Большим достоинством высокочастотных диапазонов является возможность построения антенн, соизмеримых с длиной волны, только при этом условии имеет место эффективное излучение. Применение искусственных спутников Земли позволяет эффективно использовать распространение волн в пределах прямой видимости для построения систем связи большой дальности.
Классификация радиосистем и решаемых ими задач
По выполняемым функциям информационные радиосистемы могут быть разделены на следующие классы:
передачи информации (радиосвязь, радиовещание, телевидение);
извлечения информации (радиолокация, радионавигация, радиоастрономия, радиоизмерения и т.д.);
разрушения информации (радиопротиводействие);
управления различными процессами и объектами (беспилотные летательные аппараты и др.);
комбинированные.
В системе передачи информации имеется источник информации и ее получатель. В радиосистеме извлечения информации информация как таковая не передается, а извлекается или из собственных сигналов, излученных в направлении на исследуемый объект и отраженных от него, или из сигналов других радиосистем, или из собственного радиоизлучения различных объектов.
Радиосистемы разрушения информации служат для создания помех нормальной работе конкурирующей радиосистемы путем излучения мешающего сигнала, или приема, умышленного искажения и переизлучения сигнала.
В радиосистемах управления решается задача выполнения объектом некоторой команды, посылаемой с пульта управления. Командные сигналы являются информацией для следящего устройства, выполняющего команду.
Основными задачами, решаемыми радиосистемой при приеме информации, являются:
Обнаружение сигнала на фоне помехи.
Различение сигналов на фоне помехи.
Оценка параметров сигнала.
Воспроизведение сообщения.
Наиболее просто решается первая задача, в которой с заданными вероятностями правильного обнаружения и ложной тревоги следует принять решение о наличии известного сигнала в принятом сообщении. Чем выше уровень задачи, тем сложнее становится схема принимающего устройства.
Yandex.RTB R-A-252273-3- Предмет теория электрической связи
- Информация, сообщение, сигнал
- Обобщенная схема системы передачи информации
- Модели канала связи
- Описание сигналов
- Энергетические характеристики сигналов
- Гармоническое колебание
- Обобщенный ряд Фурье
- Тригонометрический ряд Фурье
- Действительный частотный спектр сигнала
- Комплексный ряд Фурье и спектр сигнала
- Распределение мощности в спектре периодического сигнала
- Огибающая спектра периодического сигнала
- Пример: периодическая последовательность прямоугольных импульсов
- Связь между огибающей спектра периодического сигнала и спектральной плотностью непериодического сигнала той же формы
- Распределение энергии в спектре непериодического сигнала
- Примеры. Одиночный прямоугольный импульс. Экспоненциальный импульс. Гауссов импульс
- Линейная комбинация сигналов
- Сдвиг сигнала во времени
- Смещение спектра сигнала
- Произведение двух сигналов
- Взаимная заменяемость частоты и времени в паре преобразований Фурье
- Преобразование Лапласа на плоскости комплексной частоты
- Основные свойства преобразования Лапласа
- Взаимная и автокорреляционные функции сигнала
- Связь между автокорреляционной функцией и спектром сигнала
- Акф периодического сигнала
- Общие определения
- Амплитудно-модулированные радиосигналы
- Радиосигналы с угловой модуляцией
- Амплитудно-частотная модуляция
- Узкополосный сигнал
- Классификация методов анализа прохождения сложных сигналов через линейные цепи
- Частотная передаточная характеристика цепи
- Переходная и импульсная характеристики цепи
- Обоснование частотного метода
- Чаcтотные фильтры. Классификация и основные параметры
- Прохождение частотно-модулированных колебаний через колебательную систему
- Колебательные цепи при импульсном воздействии
- Сущность операторного метода
- Примеры применения операторного метода
- Виды случайных процессов
- Широкополосный случайный процесс. Белый шум
- Узкополосный случайный процесс
- Задачи и этапы синтеза
- Спектр дискретизированного сигнала
- Статические и динамические параметры нелинейного элемента
- Основные показатели и характеристики усилителя
- Общие сведения о сигналах
- Преобразователь частоты