logo
Лекции ТЭС

Частотная передаточная характеристика цепи

Для реальной системы некоторые ее системные характеристики могут быть определены экспериментально. Для определения частотной передаточной характеристики на вход следует подавать гармонические колебания

,

и измерять амплитуду и фазу гармонического сигнала на выходе

.

При изменении частоты входного сигнала на выходе линейной цепи могут изменяться амплитуда и фаза. Частотной передаточной характеристикой цепи называется комплексная функция

Модуль этой функции K( ) называется амплитудно-частотной характеристикой цепи, а разность фаз вых - вх = к - фазо-частотной характеристикой цепи.

Распространяя это определение и на область отрицательных частот, получают более обобщенную передаточную характеристику, которую обозначим через или , причем H( )=K( ), н( >0)=k, н( <0)=- k.

Теоретически можно получить выражение для частотной передаточной характеристики, используя установившееся решение дифференциального уравнения, связывающего напряжения (или токи) на входе и выходе линейной системы. В общем виде это уравнение можно свести к одному дифференциальному уравнению вида

При воздействии вида , где , на выходе получаем установившийся сигнал , где . Для установившегося режима получаем следующее алгебраическое уравнение

,                  (1)

откуда получаем соотношение для частотной передаточной характеристики:

.                                                   (2)

Аналогичное выражение получается сразу при использовании комплексного метода, при котором входной и выходной сигнал задаются своими комплексными амплитудами, а элементы цепи - своими комплексными сопротивлениями. Этот метод будет использован далее при анализе некоторых цепей.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4