Предмет теория электрической связи
Современная радиоэлектроника является важным инструментом техники коммуникаций и связи. Жизнь современного общества немыслима без обмена информацией, который осуществляется с помощью средств современной радиоэлектроники, поэтому изучение курса "Основы радиоэлектроники и связи" студентами, обучающимися по специальности "Проектирование и технология радиоэлектронных средств", должно обеспечить им понимание процессов, происходящих в радиоэлектронных цепях различного назначения, умение применять полученные знания при изучении специальных дисциплин.
Понятие "тэс" образовалось в результате объединения понятий "радиотехника" и "электроника".
ТЭС - это область науки, использующая электромагнитные колебания радиочастотного диапазона для осуществления передачи информации на большие расстояния.
У истоков радиотехники стояли М.Фарадей (Великобритания), открывший закономерности взаимодействия электрических и магнитных полей, Дж.Максвелл (Великобритания), создавший математическую теорию электромагнитного поля и электромагнитных волн, А.С.Попов (Россия), первым (1895) испытавший радиотехническую систему связи и др. Следует отметить большой вклад таких русских ученых как М.А.Бонч-Бруевич, А.Л.Берг, В.А.Котельников.
Электроника - это область науки и техники, использующая явления движения носителей электрического заряда, происходящие в вакууме, газах, жидкостях и твердых телах. Развитие электроники позволило создать элементную базу радиоэлектроники. Первый электронный прибор (вакуумный диод) изобрел Т.Эдиссон (США), управляемый электронный прибор создал Л.Форест (Великобритания). Полупроводниковый период электроники связан с такими именами, как К.Браун (Германия), О.В.Лосев, Д.Баруни (СССР).Создание такой элементной базы электроники как интегральные схемы, позволило существенно уменьшить габариты и упростить работу всей маломощной электроники от простейших радиоприемников до современных вычислительных комплексов.
Продолжают развиваться и радиоэлектронные устройства большой мощности, используемые в системах связи (радиовещании, телевидении и др.).
Современную радиоэлектронику применяют в системах радиосвязи, радиовещании и телевидении, радиолокации и радионавигации, радиоуправлении и радиотелеметрии, в медицине и биологии, в промышленности и космических проектах.
Задачи, решаемые радиоэлектронной системой связи, определяются как передача информации на расстояние с помощью электромагнитных колебаний (волн).
Электромагнитные колебания, несущие информацию, могут распространяться в свободном пространстве либо передаваться по волноводам, световодам и другим средствам передачи.
Радиотехническим каналом связи будем называть совокупность средств для передачи информации с помощью электромагнитных волн.
Yandex.RTB R-A-252273-3- Предмет теория электрической связи
- Информация, сообщение, сигнал
- Обобщенная схема системы передачи информации
- Модели канала связи
- Описание сигналов
- Энергетические характеристики сигналов
- Гармоническое колебание
- Обобщенный ряд Фурье
- Тригонометрический ряд Фурье
- Действительный частотный спектр сигнала
- Комплексный ряд Фурье и спектр сигнала
- Распределение мощности в спектре периодического сигнала
- Огибающая спектра периодического сигнала
- Пример: периодическая последовательность прямоугольных импульсов
- Связь между огибающей спектра периодического сигнала и спектральной плотностью непериодического сигнала той же формы
- Распределение энергии в спектре непериодического сигнала
- Примеры. Одиночный прямоугольный импульс. Экспоненциальный импульс. Гауссов импульс
- Линейная комбинация сигналов
- Сдвиг сигнала во времени
- Смещение спектра сигнала
- Произведение двух сигналов
- Взаимная заменяемость частоты и времени в паре преобразований Фурье
- Преобразование Лапласа на плоскости комплексной частоты
- Основные свойства преобразования Лапласа
- Взаимная и автокорреляционные функции сигнала
- Связь между автокорреляционной функцией и спектром сигнала
- Акф периодического сигнала
- Общие определения
- Амплитудно-модулированные радиосигналы
- Радиосигналы с угловой модуляцией
- Амплитудно-частотная модуляция
- Узкополосный сигнал
- Классификация методов анализа прохождения сложных сигналов через линейные цепи
- Частотная передаточная характеристика цепи
- Переходная и импульсная характеристики цепи
- Обоснование частотного метода
- Чаcтотные фильтры. Классификация и основные параметры
- Прохождение частотно-модулированных колебаний через колебательную систему
- Колебательные цепи при импульсном воздействии
- Сущность операторного метода
- Примеры применения операторного метода
- Виды случайных процессов
- Широкополосный случайный процесс. Белый шум
- Узкополосный случайный процесс
- Задачи и этапы синтеза
- Спектр дискретизированного сигнала
- Статические и динамические параметры нелинейного элемента
- Основные показатели и характеристики усилителя
- Общие сведения о сигналах
- Преобразователь частоты