Примеры. Одиночный прямоугольный импульс. Экспоненциальный импульс. Гауссов импульс
Пусть дан прямоугольный импульс с амплитудой А и длительностью . На оси времени он задан положением середины импульса t0 (рис.3).
Рис. 3
Тогда аналитически сигнал можно описать следующим образом.
Определим выражение для спектральной плотности.
Если это выражение разделить на Т и подставить вместо частоту n 1 , то получим уже известное выражение для АЧС последовательности прямоугольных импульсов:
Нули модуля спектральной плотности расположены на частотах =2 k/ , где k= 1, 2,... На частоте =0 спектральная плотность равна S( 0 )=A .
На рис.4 изображены графики АЧХ и ФЧХ прямоугольного импульса с учетом знака синуса.
Рис. 4
Полная энергия импульса равна
Энергия сигнала, ограниченного первым лепестком спектральной плотности, составляет 90% мощности прямоугольного импульса.
Определим спектральную плотность экспоненциального импульса вида
изображенного на рис.5.
а) б)
Рис. 5
В этом случае
Графики АЧХ и ФЧХ показаны на рис.5,б. На частоте =0 S(0)=A/ ; при << ; при >> ; на частоте = . Таким образом, спектральная плотность экспоненциального импульса не имеет нулей и плавно уменьшается с увеличением частоты.
Колоколообразный (гауссовский) импульс определяется выражением
Во временной области он изображен на рис. 6а. Условно длительность такого импульса определяют по уровню е-1/ 2 от амплитуды.
Спектральная плотность определяется через интеграл Фурье:
После замены переменных:
где
,
интеграл приводится к виду
причем
Окончательно получаем
где
Таким образом, спектральная плотность гауссовского импульса является действительной функцией частоты s=0) (т.к. сигнал задан четным образом), модуль которой также является гауссовским импульсом (рис. 6б).
а) б)
Рис. 6
Т.е. гауссовскому спектру соответствует гауссовский импульс, причем чем шире полоса спектра, определяемая на уровне е-1/ 2 от максимума величиной b, тем уже условная длительность импульса, определяемая величиной а=1/b, и наоборот.
Yandex.RTB R-A-252273-3- Предмет теория электрической связи
- Информация, сообщение, сигнал
- Обобщенная схема системы передачи информации
- Модели канала связи
- Описание сигналов
- Энергетические характеристики сигналов
- Гармоническое колебание
- Обобщенный ряд Фурье
- Тригонометрический ряд Фурье
- Действительный частотный спектр сигнала
- Комплексный ряд Фурье и спектр сигнала
- Распределение мощности в спектре периодического сигнала
- Огибающая спектра периодического сигнала
- Пример: периодическая последовательность прямоугольных импульсов
- Связь между огибающей спектра периодического сигнала и спектральной плотностью непериодического сигнала той же формы
- Распределение энергии в спектре непериодического сигнала
- Примеры. Одиночный прямоугольный импульс. Экспоненциальный импульс. Гауссов импульс
- Линейная комбинация сигналов
- Сдвиг сигнала во времени
- Смещение спектра сигнала
- Произведение двух сигналов
- Взаимная заменяемость частоты и времени в паре преобразований Фурье
- Преобразование Лапласа на плоскости комплексной частоты
- Основные свойства преобразования Лапласа
- Взаимная и автокорреляционные функции сигнала
- Связь между автокорреляционной функцией и спектром сигнала
- Акф периодического сигнала
- Общие определения
- Амплитудно-модулированные радиосигналы
- Радиосигналы с угловой модуляцией
- Амплитудно-частотная модуляция
- Узкополосный сигнал
- Классификация методов анализа прохождения сложных сигналов через линейные цепи
- Частотная передаточная характеристика цепи
- Переходная и импульсная характеристики цепи
- Обоснование частотного метода
- Чаcтотные фильтры. Классификация и основные параметры
- Прохождение частотно-модулированных колебаний через колебательную систему
- Колебательные цепи при импульсном воздействии
- Сущность операторного метода
- Примеры применения операторного метода
- Виды случайных процессов
- Широкополосный случайный процесс. Белый шум
- Узкополосный случайный процесс
- Задачи и этапы синтеза
- Спектр дискретизированного сигнала
- Статические и динамические параметры нелинейного элемента
- Основные показатели и характеристики усилителя
- Общие сведения о сигналах
- Преобразователь частоты