logo search
Ответы_к_экзамену_2010

Общая характеристика аналоговых фильтров-прототипов: Баттерворта, Чебышева I и II типа, Золоторева-Каура (эллиптические). Методика применения билинейного z-преобразования.

Общая характеристика аналоговых фильтров-прототипов

Фильтры Баттерворта, Чебышева, инверсные Чебышева и эллиптические образуют четыре наиболее известных класса. Фильтр Баттерворта обладает монотонной характеристикой (Характеристика является монотонно спадающей, если она никогда не возрастает с увеличением частоты.) Характеристика фильтра Чебышева содержит пульсации (колебания передачи) в полосе пропуска­ния и монотонна в полосе задерживания. Инверсная характеристика фильтра Чебышева монотонна в полосе пропускания и обладает пульсациями в полосе задерживания.

Амплитудно-частотная характеристика фильтра Баттерворта наиболее плоская около частоты =0 по сравнению с характеристикой любого полиномиального фильтра n-го порядка и вследствие этого называется максимально плоской. Следовательно, для диапазона низких частот характеристика фильтра Баттерворта наилучшим образом аппроксимирует идеальную характеристику. Однако для частот, расположенных около точки среза и в полосе задерживания, характеристика фильтра Баттерворта заметно уступает характеристике Чебышева, который рассматривается ниже.

Однако фазочастотная характеристика фильтра Баттерворта лучше (более близка к линейной), чем соответствующие фазочастотные характеристики фильтров Чебышева, инверсных Чебышева и эллиптических сравнимого порядка. Это согласуется с общим правилом для фильтров данного типа – чем лучше амплитудно-частотная характеристика, тем хуже фазочастотная, и наоборот.

Амплитудно-частотная характеристика фильтра Чебышева данного порядка лучше амплитудно-частотной характеристики Баттерворта, так как у фильтра Чебышева уже ширина переходной области. Однако фазочастотная характеристика фильтра Чебышева хуже (более нелинейна) по сравнению с фазочастотной характеристикой фильтра Баттерворта. Можно также отметить, что фазочастотные характеристики фильтров Чебышева высокого порядка хуже фазочастотных характеристик фильтров более низкого порядка. Это согласуется с тем фактом, что амплитудно-частотная характеристика фильтра Чебышева высокого порядка лучше амплитудно-частотной характеристики фильтра более низкого порядка.

Эллиптический фильтр имеет амплитудно-частотную характеристику, которая содержит пульсации как в полосе пропускания, так и в полосе задерживания и является лучшим среди всех фильтров нижних частот в том смысле, что для заданного порядка и допустимых отклонений характеристик в полосах пропускания и задерживания обладает самой узкой шириной переходной области.

Метод билинейного преобразования.

Эффект наложения в методе инвариантности импульсной характеристики вызывается тем, что отсутствует однозначная функция перехода из s-плоскости в z-плоскость. Для исключения этого нежелательного эффекта наложения необходимо определить однозначное непрерывное отображение. Одним из таких преобразований является билинейное преобразование, которое определяется следующим образом:

.

(31)

Графически билинейное преобразование выглядит так:

Данное преобразование отображает точку (0; 0) в точу (1; 0), а (0; ) и (0; -) — в точку (-1; 0).

Билинейное преобразование (31) – однозначная функция. Это означает, что каждой точке в z-плоскости соответствует только одна точка в s-плос­кости и наоборот. Из этого свойства однозначности следует, что отсутствует эффект наложения спектров при билинейной процедуре отображения. Методика расчета цифровых фильтров на основе метода билинейного преобразования включает в себя нахождение подходящей передаточной функции Н(s) аналогового фильтра и применение к ней билинейного преобразования (31) для получения передаточной функции Н(z) требуемого цифрового фильтра.

При этом преобразовании будут сохраняться и частотные характеристики, и свойства устойчивости аналогового фильтра. Однако это не означает, что частотные характеристики аналогового и цифрового фильтров идентичны, одинакова только их “форма”. Например, если амплитудно-частотная характеристика аналогового фильтра монотонно спадает для 0<<, то соответствующий цифровой фильтр, полученный с помощью соотношения (31), будет обладать монотонно спадающей амплитудно-частотной характеристикой от 0 до . Однако соотношение между цифровой частотной переменной и аналоговой частотной переменной нелинейно:

.

(32)

Билинейное преобразование обеспечивает простую процедуру перехода от аналоговых к цифровым фильтрам и сохраняет вид частотных характеристик при преобразовании. Это означает, что широкополосные аналоговые фильтры с крутой переходной областью отображаются в широкополосные цифровые фильтры без эффекта наложения. В этом заключается основное преимущество этого метода по сравнению с методом инвариантности импульсной характеристики. Недостатком билинейного преобразования является то, что нелинейность соотношения между цифровой частотой и ана­ло­го­вой частотой приводит к искажению частотных характеристик аналоговых фильтров. Кроме того, при этом преобразовании не сохраняется импульсная х-ка.