Паразитная амплитудная модуляция спектра
Дискретное преобразование Фурье можно рассматривать как обработку сигналов набором полосовых фильтров, центральные частоты которых соответствуют дискретным отсчетам X(k), где k – целое число из интервала [0; N –1] (рис. 1.46).
Рис. 1.46. Амплитудно-частотная характеристика ДПФ: (а) отдельные кривые вида sin(x)/x для каждого коэффициента ДПФ; (б) общая амплитудно-частотная характеристика
В идеальном случае каждому коэффициенту ДПФ соответствует фильтр с прямоугольной частотной характеристикой, однако, вследствие умножения входной последовательности на взвешивающую (оконную) функцию, фактическая частотная характеристика имеет вид функции sinc(x), имеющей основной и боковые лепестки. На рис. 1.46 показаны главные лепестки частотных характеристик соответствующего набора фильтров, а боковые лепестки не показаны. Ширина каждого главного лепестка обратно пропорциональна длине массива исходных данных
Главные лепестки представляют собой N независимых фильтров. Это означает, что входной сигнал ejt с частотой кратной 1/T, будет проходить через фильтр, настроенный соответственно на частоту сигнала, без изменений и будет полностью подавлен остальными фильтрами.
Эффект паразитной модуляции спектра проявляется, когда частота анализируемого сигнала не совпадает ни с одной из этих дискретных ортогональных частот. Например, сигнал с частотой между третьей и четвертой гармониками проходит как через третий, так и через четвертый фильтр, причем его уровень на выходе обоих фильтров будет меньше единицы. В наихудшем случае, когда частота сигнала попадает точно в середину между рассчитываемыми гармониками, амплитуда сигнала падает до уровня 0,637. При возведении этого значения в квадрат «наблюдаемая» мощность сигнала уменьшается до уровня 0,406. Энергетический спектр, оцениваемый по выходным сигналам фильтров, приобретает таким образом паразитную модуляцию, изменяющую истинные значения до 2,5 раз. Это явление напоминает рассматривание истинного спектра через частокол (отсюда и часто применяемый термин – «эффект частокола» или «гребешковое искажение»). Влияние гребешкового искажения можно оценить следующим выражением
(1.230)
где W – ДПФ весовой функции, – круговая частота дискретизации, N – число элементов выборки n – номер элемента выборки, – весовая функция, дискретизированная во временной области.
Уменьшить гребешковое искажение можно при помощи комплексной интерполяции коэффициентов ДПФ или путем введения в реальные данные дополнительных нулей.
Если дополнить исходную выборку нулями, то в результате получается избыточный алгоритм ДПФ, который даст дополнительные отстчеты спектра на частотах, лежащих между частотами первоначальных гармоник. При этом частотные характеристики фильтров, ассоциируемых с новым набором коэффициентов ДПФ, перекрывают друг друга в большей степени. Если отсчеты ДПФ исходной последовательности есть X(k), где k = 0, 1, …, N – 1, то для расширенной последовательности коэффициенты ДПФ X(k) будут определяться таким образом:
(1.231)
Дополнительные коэффициенты ДПФ, возникающие в результате такого расширения, размещаются в промежутках первоначального набора коэффициентов Фурье. При этом паразитная амплитудная модуляция спектра уменьшается с 60 % до 20 %. Она может быть больше или меньше 20 % в зависимости от того, большее или меньшее число дополнительных отсчетов используется при расчете ДПФ.
Следует отметить, что на практике гребешковое искажение не столь существенно, так как во многих случаях обрабатываемый сигнал не является чисто гармоническим или полигармоническим, а достаточно широкополосен для заполнения нескольких фильтров. Кроме того, использование весовых функций, отличающихся от прямоугольной, обычно способствует уменьшению влияния этого эффекта за счет расширения главного лепестка частотной характеристики каждого фильтра.
Как уже отмечалось, конечная длина данных ограничивает возможное разрешение по частоте до (Гц). В результате получается достаточно грубый спектр, который можно сгладить и сделать непрерывным, используя дополнительные нули. Данный процесс является ни чем иным, как просто интерполяцией спектральной кривой между соседними гармониками. Действительного улучшения разрешения можно добиться только за счет более длительной реализации обрабатываемого сигнала. После дополнения нулями частотный интервал между линиями спектра становится равным (Гц).
- Общие принципы получения информации в физических исследованиях. Основные цели обработки сигналов. Преимущества цифровых методов обработки сигналов. Примеры практического применения.
- Содержание, этапы, методы и задачи цифровой обработки сигналов. Основные методы и алгоритмы цос.
- Основные направления, задачи и алгоритмы цифровой обработки сигналов
- Дискретные и цифровые сигналы. Основные дискретные последовательности теории цос.
- Линейные дискретные системы с постоянными параметрами. Импульсная характеристика. Физическая реализуемость и устойчивость.
- Линейные разностные уравнения с постоянными параметрами, их практическое значение и решение.
- Соотношение между z-преобразованием и преобразованием Фурье
- Обратное z-преобразование и методы его нахождения: на основе теоремы о вычетах, разложение на простые дроби и в степенной ряд.
- Передаточная функция дискретных систем. Диаграммы нулей и полюсов. Условие устойчивости.
- Частотная характеристика дискретных систем. Амплитудно-частотная и фазочастотная характеристики.
- Фазовая и групповая задержка. Цифровая частота и единицы измерения частоты, которые используются в цифровой обработке сигналов.
- Общая характеристика дискретного преобразования Фурье. Задачи, решаемые с помощью дпф. Дискретный ряд Фурье.
- Дискретный ряд Фурье
- Свойства дискретных рядов Фурье. Периодическая свертка двух последовательностей.
- Дискретное преобразование Фурье. Основные свойства.
- Общая характеристика ряда и интеграла Фурье, дискретного ряда Фурье и дискретного преобразования Фурье. Равенство Парсеваля.
- Прямой метод вычисления дпф. Основные подходы к улучшению эффективности вычисления дпф.
- Алгоритмы бпф с прореживанием по времени. Основные свойства.
- Двоичная инверсия входной последовательности для
- Алгоритмы бпф с прореживанием по частоте. Вычисление обратного дпф.
- Вычисление периодической, круговой и линейной свертки. Алгоритм быстрой свертки. Вычислительная эффективность.
- Вычисление линейной свертки с секционированием.
- Амплитудный спектр, спектр мощности. Определение и алгоритмы получения.
- Оценка спектра мощности на основе периодограммы. Свойства периодограммы. Методы получения состоятельных периодограммных оценок.
- Основные проблемы цифрового спектрального анализа. Взвешивание. Свойства весовых функций. Модифицированные периодограммные оценки спм.
- 1.6.1. Просачивание спектральных составляющих и размывание спектра
- Взвешивание. Свойства весовых функций
- Паразитная амплитудная модуляция спектра
- Эффекты конечной разрядности чисел в алгоритмах бпф
- Метод модифицированных периодограмм
- Метод Блэкмана и Тьюки получения оценки спектральной плотности мощности. Сравнительная оценка качества методов получения спм.
- Сравнение методов оценки спектральной плотности мощности
- Основные характеристики цифровых фильтров. Рекурсивные и нерекурсивные цифровые фильтры, их преимущества и недостатки.
- Структурные схемы бих-фильтров (прямая и каноническая, последовательная и параллельная формы реализации).
- Структурные схемы ких-фильтров (прямая, каскадная, с частотной выборкой, схемы фильтров с линейной фазой, на основе метода быстрой свертки).
- Проектирование цифровых фильтров. Основные этапы и их краткая характеристика.
- Расчет цифровых бих-фильтров по данным аналоговых фильтров. Этапы и требования к процедурам перехода.
- Общая характеристика аналоговых фильтров-прототипов: Баттерворта, Чебышева I и II типа, Золоторева-Каура (эллиптические). Методика применения билинейного z-преобразования.
- Эффекты конечной разрядности чисел в бих-фильтрах. Ошибки квантования коэффициентов, ошибки переполнения и округления. Предельные циклы.
- Расчет цифровых ких-фильтров: методы взвешивания и частотной выборки.
- Эффекты конечной разрядности чисел в ких-фильтрах.
- Общая структурная схема системы цос. Дискретизация сигналов. Теорема отсчетов.
- Погрешности дискретизации. Выбор частоты дискретизации в реальных условиях. Эффект наложения спектров
- Дискретизация узкополосных сигналов
- Выбор частоты дискретизации на практике
- Квантование сигналов. Погрешность квантования. Отношение сигнал/шум и динамический диапазон при квантовании сигналов. Равномерное и неравномерное квантование
- Анализ ошибок
- Отношение сигнал/шум и динамический диапазон
- Способы реализации алгоритмов и систем цос. Понятие реального времени обработки.
- Особенности цос, влияющие на элементную базу, ориентированной на реализацию цифровых систем обработки сигналов.
- Общие свойства процессоров цифровой обработки сигналов и особенности их архитектуры.
- Архитектура Фон Неймана и гарвардская архитектура в пцос. Преимущества и недостатки.
- Универсальные процессоры цос. Общая характеристика процессоров с фиксированной и плавающей точкой (запятой).
- Основные различия между микроконтроллерами, микропроцессорами и сигнальными процессорами.