Взвешивание. Свойства весовых функций
Для классификации функций окна (весовых функций) используется несколько показателей оценки их качества (общее число их 9). Так, для количественной оценки ширины полосы главного лепестка используются два показателя. Традиционным является ширина полосы на уровне половинной мощности, т. е. на уровне, который на 3дБ ниже максимума главного лепестка. В качестве второго показателя используется эквивалентная шумовая полоса. Данная величина определяется как полоса идеального (с прямоугольной амплитудно-частотной характеристикой) фильтра, квадрат модуля частотной характеристики которого равен максимальному значению этого параметра для реального фильтра и значение среднего квадрата выходного сигнала которого равно значению среднего квадрата сигнала на выходе реального фильтра при воздействии на его вход белого шума (рис. 1.44).
Эквивалентная шумовая полоса позволяет сравнивать между собой различные оконные функции. Чем меньше эквивалентная шумовая полоса, тем лучше весовая функция.
Эквивалентная шумовая полоса в рассматриваемом случае определяется следующим выражением
(2.225)
Рис. 1.44. Эквивалентная шумовая полоса. Площадь под кривой идеальной характеристики равна площади под кривой реальной характеристики
Как уже отмечалось, при взвешивании отсчеты на краях выборки обнуляются, что приводит к потере информации. Для решения данной проблемы используется метод Уэлча. Если перекрытие отдельных сегментов составляет 50–75 %, то в этом случае в спектре будет отражено большинство особенностей, содержащихся в обрабатываемых данных.
Два показателя используются для оценки характеристик боковых лепестков. Один из них – это пиковый (или максимальный) уровень боковых лепестков, который позволяет судить о том, насколько хорошо окно подавляет просачивание. Второй – это скорость спадания уровня боковых лепестков, который характеризует скорость, с которой снижается уровень боковых лепестков, ближайших к главному лепестку. По сути дела, скорость спадания уровня боковых лепестков зависит от числа используемых отсчетов N и с увеличением N стремиться к некоторой асимптотической величине, которую принято выражать в децибелах на октаву изменения ширины полосы частот.
Следует отметить, что в настоящее время известно более двух десятков оконных функций с различными характеристиками.
Математические функции, описывающие четыре наиболее популярные оконные функции (Хемминга, Ханна, Блэкмана и минимальная 4-членная Блэкмана-Хэрриса), представляют собой следующее:
Хемминга (приподнятый косинус):
(2.226)
Ханна (косинус-квадрат):
(2.227)
Блэкмана:
(2.228)
Минимальная 4-х членная Блэкмана-Хэрриса:
(2.229)
где
На рис. 1.45 представлены частотные характеристики прямоугольного окна, окон Хемминга и Блэкмана для N = 256.
Оцифрованные оконные функции обычно вычисляются предварительно и сохраняются в памяти с целью минимизации вычислений непосредственно при реализации БПФ.
Рис. 1.45. Частотные характеристики прямоугольного окна, окна Хемминга и Блэкмана для N = 256
Основные характеристики окон, представленных выражениями (1.227)– 1.229) приведены в табл. 1.10. Значения, помещенные в колонке «Эквивалентная ширина полосы», нормированы относительно частотного разрешения ДПФ, равного Гц.
Таблица 1.10
Характеристики наиболее распространенных окон
Функция окна | Ширина полосы по уровню 3дБ | Максимальный уровень боковых лепестков, дБ | Скорость спадания боковых лепестков, дБ/октава | Эквивалентная ширина полосы |
Прямоугольная | 0,89 | –13 | –6 | 1,00 |
Хемминга | 1,30 | –43 | –6 | 1,36 |
Ханна | 1,44 | –32 | –18 | 1,50 |
Блэкмана | 1,68 | –58 | –18 | 1,73 |
Минимальная 4-х членная Блэкмана-Хэрриса | 1,90 | –92 | –6 | 2,00 |
Из всех приведенных в табл. 1.10 окон самый узкий главный лепесток имеет частотная характеристика прямоугольного окна, но зато у него самый высокий уровень боковых лепестков. Окно типа «косинус квадрат» названо в честь австрийского метеоролога Юлиуса фон Ханна. Это окно часто ошибочно называют окном Хэннинга. Оно примечательно тем, что его легко реализовать в частотной области всего лишь с помощью трех операций сложения и двух операций сдвига, что, по сути дела, сводится к умножению на коэффициенты 1/2 и 1/4 на каждой частоте. Окно типа приподнятой косинусоиды было введено Р. У. Хеммингом и поэтому называется его именем. Множители 0,54 и 0,46 были выбраны для того, чтобы практически полностью устранить максимальный боковой лепесток частотной функции прямоугольного окна.
В разделе, посвященном разработке цифровых фильтров с конечной импульсной характеристикой, будут рассмотрены и некоторые другие оконные функции.
- Общие принципы получения информации в физических исследованиях. Основные цели обработки сигналов. Преимущества цифровых методов обработки сигналов. Примеры практического применения.
- Содержание, этапы, методы и задачи цифровой обработки сигналов. Основные методы и алгоритмы цос.
- Основные направления, задачи и алгоритмы цифровой обработки сигналов
- Дискретные и цифровые сигналы. Основные дискретные последовательности теории цос.
- Линейные дискретные системы с постоянными параметрами. Импульсная характеристика. Физическая реализуемость и устойчивость.
- Линейные разностные уравнения с постоянными параметрами, их практическое значение и решение.
- Соотношение между z-преобразованием и преобразованием Фурье
- Обратное z-преобразование и методы его нахождения: на основе теоремы о вычетах, разложение на простые дроби и в степенной ряд.
- Передаточная функция дискретных систем. Диаграммы нулей и полюсов. Условие устойчивости.
- Частотная характеристика дискретных систем. Амплитудно-частотная и фазочастотная характеристики.
- Фазовая и групповая задержка. Цифровая частота и единицы измерения частоты, которые используются в цифровой обработке сигналов.
- Общая характеристика дискретного преобразования Фурье. Задачи, решаемые с помощью дпф. Дискретный ряд Фурье.
- Дискретный ряд Фурье
- Свойства дискретных рядов Фурье. Периодическая свертка двух последовательностей.
- Дискретное преобразование Фурье. Основные свойства.
- Общая характеристика ряда и интеграла Фурье, дискретного ряда Фурье и дискретного преобразования Фурье. Равенство Парсеваля.
- Прямой метод вычисления дпф. Основные подходы к улучшению эффективности вычисления дпф.
- Алгоритмы бпф с прореживанием по времени. Основные свойства.
- Двоичная инверсия входной последовательности для
- Алгоритмы бпф с прореживанием по частоте. Вычисление обратного дпф.
- Вычисление периодической, круговой и линейной свертки. Алгоритм быстрой свертки. Вычислительная эффективность.
- Вычисление линейной свертки с секционированием.
- Амплитудный спектр, спектр мощности. Определение и алгоритмы получения.
- Оценка спектра мощности на основе периодограммы. Свойства периодограммы. Методы получения состоятельных периодограммных оценок.
- Основные проблемы цифрового спектрального анализа. Взвешивание. Свойства весовых функций. Модифицированные периодограммные оценки спм.
- 1.6.1. Просачивание спектральных составляющих и размывание спектра
- Взвешивание. Свойства весовых функций
- Паразитная амплитудная модуляция спектра
- Эффекты конечной разрядности чисел в алгоритмах бпф
- Метод модифицированных периодограмм
- Метод Блэкмана и Тьюки получения оценки спектральной плотности мощности. Сравнительная оценка качества методов получения спм.
- Сравнение методов оценки спектральной плотности мощности
- Основные характеристики цифровых фильтров. Рекурсивные и нерекурсивные цифровые фильтры, их преимущества и недостатки.
- Структурные схемы бих-фильтров (прямая и каноническая, последовательная и параллельная формы реализации).
- Структурные схемы ких-фильтров (прямая, каскадная, с частотной выборкой, схемы фильтров с линейной фазой, на основе метода быстрой свертки).
- Проектирование цифровых фильтров. Основные этапы и их краткая характеристика.
- Расчет цифровых бих-фильтров по данным аналоговых фильтров. Этапы и требования к процедурам перехода.
- Общая характеристика аналоговых фильтров-прототипов: Баттерворта, Чебышева I и II типа, Золоторева-Каура (эллиптические). Методика применения билинейного z-преобразования.
- Эффекты конечной разрядности чисел в бих-фильтрах. Ошибки квантования коэффициентов, ошибки переполнения и округления. Предельные циклы.
- Расчет цифровых ких-фильтров: методы взвешивания и частотной выборки.
- Эффекты конечной разрядности чисел в ких-фильтрах.
- Общая структурная схема системы цос. Дискретизация сигналов. Теорема отсчетов.
- Погрешности дискретизации. Выбор частоты дискретизации в реальных условиях. Эффект наложения спектров
- Дискретизация узкополосных сигналов
- Выбор частоты дискретизации на практике
- Квантование сигналов. Погрешность квантования. Отношение сигнал/шум и динамический диапазон при квантовании сигналов. Равномерное и неравномерное квантование
- Анализ ошибок
- Отношение сигнал/шум и динамический диапазон
- Способы реализации алгоритмов и систем цос. Понятие реального времени обработки.
- Особенности цос, влияющие на элементную базу, ориентированной на реализацию цифровых систем обработки сигналов.
- Общие свойства процессоров цифровой обработки сигналов и особенности их архитектуры.
- Архитектура Фон Неймана и гарвардская архитектура в пцос. Преимущества и недостатки.
- Универсальные процессоры цос. Общая характеристика процессоров с фиксированной и плавающей точкой (запятой).
- Основные различия между микроконтроллерами, микропроцессорами и сигнальными процессорами.