Метод модифицированных периодограмм
Таким образом, для получения оценок спектральной плотности мощности на основе дискретного преобразования Фурье, как правило, осуществляется взвешивание исходной выборки с помощью оконных функций, отличных от прямоугольной. В этом случае выражение
(1.232)
называют модифицированной периодограммой.
Умножение обрабатываемых данных на весовую функцию, обнуляющую имеющуюся выборку по краям, уменьшает амплитуду выборок в местах спада, а следовательно, и общую мощность сигнала. Вообще говоря, все частотные составляющие в равной степени подвержены влиянию весовой функции и можно показать, что коэффициент изменения данных пропорционален корню квадратному из коэффициента когеретного усиления мощности. Последний представляет нормированную мощность исходных данных, если их рассматривать как сигнал напряжения. Весовая функция также выравнивает средний уровень данных, увеличивая тем самым полную энергию низкочастотных составляющих спектра. Данный эффект необходимо каким-то образом компенсировать, но прямое вычитание среднего взвешенных данных приводит к более явному проявлению высокочастотных боковых лепестков.
Покажем, что влияние взвешивания, проявляющегося в снижении энергии сигнала и появлении низкочастотных составляющих в спектре, можно избежать путем взвешивания линейной функции данных, а не самих данных.
Пусть исходные данные x(n) имеют нулевое среднее. Пусть среднее значение, введенное в данные при взвешивании, удалено путем вычитания из x(n) постоянной величины k1. В этом случае новые взвешенные данные можно представить как
(1.233)
где – отсчеты весовой функции, или весовые коэффициенты.
Снижение мощности сигнала, вызванное взвешиванием, можно компенсировать, умножив каждое значение x1(n) на подобранную константу k2. Тогда x1(n) преобразуют к виду
(1.234)
Требуемое значение k1 можно найти из условия равенства нулю среднего значения x2(n), т. е.
Следовательно,
Отсюда
(1.235)
Нормированная мощность данных до взвешивания равна
(1.236)
где через M обозначено математическое ожидание, а – дисперсия x(n) со средним значением k1.
Нормированная мощность взвешенных данных будет определяться аналогичным образом
(1.237)
При этом предполагается, что w(n) и x(n) взаимно независимы. Значение k2, требуемое для выравнивания мощности взвешенных и невзвешенных данных, можно получить, приравняв уравнения (1.236) и (1.237)
откуда
Следовательно,
(1.238)
Подставляя (1.235) и (1.238) в уравнение (1.234), окончательно получим
(1.239)
Как было отмечено выше, для получения состоятельных оценок спектральной плотности мощности используется усреднение нескольких периодограмм. Среди известных методов наибольшее применение получил метод Уэлча. В этом методе K сегментов данных длины M перекрываются и периодограммы вычисляются по K взвешенным сегментам. Далее периодограммы нормируются на величину U, чтобы компенсировать потери энергии вследствие процедуры взвешивания. Фактически U приравнивается к величине где k2 – коэффициент, определяемый формулой (1.238) и описывающий эффект смещения весовых функций. Следовательно,
(1.240)
Таким образом, оценка Уэлча спектральной плотности мощности представляется в следующем виде
(1.241)
где
модифицированная периодограмма, вычисленная по i-ому сегменту. Каждая из функций обладает свойствами периодограммы, описанными выше. Уэлч показал, что математическое ожидание данной оценки можно представить в виде
(1.242)
где – истинная спектральная плотность мощности анализируемого процесса x(n), а
– дискретное преобразование Фурье оконной функции.
Из (1.242) следует, что математическое ожидание искомой оценки равно свертке истинной спектральной плотности мощности с квадратом модуля Фурье-преобразования последовательности окна.
Для вычисления дисперсии используется тот факт, что дисперсия среднего арифметического K независимых одинаково распределенных случайных величин равна произведению дисперсии любой из них (они равны между собой) на множитель 1/K. Следовательно
(1.243)
или, учитывая то, что
(1.244)
Таким образом, дисперсия периодограммы Уэлча обратно пропорциональна числу усредняемых периодограмм и стремится к нулю с его ростом. Легко видеть, что увеличение объема выборки N приводит к увеличению M и K. Поэтому при стремлении N к бесконечности как смещение, так и дисперсия оценки Уэлча стремятся к нулю. Отсюда следует, что усредненная периодограмма является асимптотически несмещенной оценкой спектра мощности
При 50 %-ном перекрытии сегментов и использовании треугольного окна дисперсия оценки Уэлча будет определяться выражением
(1.245)
Таким образом, используя сдвиг сегментов всего лишь на половину ширины окна, можно уменьшить дисперсию оценки почти в два раза (но за счет удвоения времени вычисления).
- Общие принципы получения информации в физических исследованиях. Основные цели обработки сигналов. Преимущества цифровых методов обработки сигналов. Примеры практического применения.
- Содержание, этапы, методы и задачи цифровой обработки сигналов. Основные методы и алгоритмы цос.
- Основные направления, задачи и алгоритмы цифровой обработки сигналов
- Дискретные и цифровые сигналы. Основные дискретные последовательности теории цос.
- Линейные дискретные системы с постоянными параметрами. Импульсная характеристика. Физическая реализуемость и устойчивость.
- Линейные разностные уравнения с постоянными параметрами, их практическое значение и решение.
- Соотношение между z-преобразованием и преобразованием Фурье
- Обратное z-преобразование и методы его нахождения: на основе теоремы о вычетах, разложение на простые дроби и в степенной ряд.
- Передаточная функция дискретных систем. Диаграммы нулей и полюсов. Условие устойчивости.
- Частотная характеристика дискретных систем. Амплитудно-частотная и фазочастотная характеристики.
- Фазовая и групповая задержка. Цифровая частота и единицы измерения частоты, которые используются в цифровой обработке сигналов.
- Общая характеристика дискретного преобразования Фурье. Задачи, решаемые с помощью дпф. Дискретный ряд Фурье.
- Дискретный ряд Фурье
- Свойства дискретных рядов Фурье. Периодическая свертка двух последовательностей.
- Дискретное преобразование Фурье. Основные свойства.
- Общая характеристика ряда и интеграла Фурье, дискретного ряда Фурье и дискретного преобразования Фурье. Равенство Парсеваля.
- Прямой метод вычисления дпф. Основные подходы к улучшению эффективности вычисления дпф.
- Алгоритмы бпф с прореживанием по времени. Основные свойства.
- Двоичная инверсия входной последовательности для
- Алгоритмы бпф с прореживанием по частоте. Вычисление обратного дпф.
- Вычисление периодической, круговой и линейной свертки. Алгоритм быстрой свертки. Вычислительная эффективность.
- Вычисление линейной свертки с секционированием.
- Амплитудный спектр, спектр мощности. Определение и алгоритмы получения.
- Оценка спектра мощности на основе периодограммы. Свойства периодограммы. Методы получения состоятельных периодограммных оценок.
- Основные проблемы цифрового спектрального анализа. Взвешивание. Свойства весовых функций. Модифицированные периодограммные оценки спм.
- 1.6.1. Просачивание спектральных составляющих и размывание спектра
- Взвешивание. Свойства весовых функций
- Паразитная амплитудная модуляция спектра
- Эффекты конечной разрядности чисел в алгоритмах бпф
- Метод модифицированных периодограмм
- Метод Блэкмана и Тьюки получения оценки спектральной плотности мощности. Сравнительная оценка качества методов получения спм.
- Сравнение методов оценки спектральной плотности мощности
- Основные характеристики цифровых фильтров. Рекурсивные и нерекурсивные цифровые фильтры, их преимущества и недостатки.
- Структурные схемы бих-фильтров (прямая и каноническая, последовательная и параллельная формы реализации).
- Структурные схемы ких-фильтров (прямая, каскадная, с частотной выборкой, схемы фильтров с линейной фазой, на основе метода быстрой свертки).
- Проектирование цифровых фильтров. Основные этапы и их краткая характеристика.
- Расчет цифровых бих-фильтров по данным аналоговых фильтров. Этапы и требования к процедурам перехода.
- Общая характеристика аналоговых фильтров-прототипов: Баттерворта, Чебышева I и II типа, Золоторева-Каура (эллиптические). Методика применения билинейного z-преобразования.
- Эффекты конечной разрядности чисел в бих-фильтрах. Ошибки квантования коэффициентов, ошибки переполнения и округления. Предельные циклы.
- Расчет цифровых ких-фильтров: методы взвешивания и частотной выборки.
- Эффекты конечной разрядности чисел в ких-фильтрах.
- Общая структурная схема системы цос. Дискретизация сигналов. Теорема отсчетов.
- Погрешности дискретизации. Выбор частоты дискретизации в реальных условиях. Эффект наложения спектров
- Дискретизация узкополосных сигналов
- Выбор частоты дискретизации на практике
- Квантование сигналов. Погрешность квантования. Отношение сигнал/шум и динамический диапазон при квантовании сигналов. Равномерное и неравномерное квантование
- Анализ ошибок
- Отношение сигнал/шум и динамический диапазон
- Способы реализации алгоритмов и систем цос. Понятие реального времени обработки.
- Особенности цос, влияющие на элементную базу, ориентированной на реализацию цифровых систем обработки сигналов.
- Общие свойства процессоров цифровой обработки сигналов и особенности их архитектуры.
- Архитектура Фон Неймана и гарвардская архитектура в пцос. Преимущества и недостатки.
- Универсальные процессоры цос. Общая характеристика процессоров с фиксированной и плавающей точкой (запятой).
- Основные различия между микроконтроллерами, микропроцессорами и сигнальными процессорами.