Фазовая и групповая задержка. Цифровая частота и единицы измерения частоты, которые используются в цифровой обработке сигналов.
Следует отметить, что в общем случае влияние фазовой характеристики системы на входной сигнал принято характеризовать фазовой задержкой и групповым временем задержки (групповой задержкой).
Фазовая задержка на частоте – это задержка гармонического колебания с частой , проходящего через систему. Значение фазовой задержки равно фазовому сдвигу, вносимому системой, деленному на частоту гармонического колебания и взятому со знаком «минус»:
(1.69)
Групповая задержка (групповое время задержки или запаздывания) – это задержка огибающей узкополосного сигнала со средней частой . Групповая задержка определяется как производная от ФЧХ по частоте, взятая со знаком «минус»:
(1.80)
Часто говорят, что фазовая задержка – это величина временной задержки, которую испытывает каждая частотная составляющая сигнала при прохождении через линейную дискретную систему, а групповая задержка – это средняя временная задержка составного (сложного) сигнала.
Для модуля и аргумента частотной характеристики справедливы также следующие выражения:
(1.81)
и
(1.82)
где – действительная, а – мнимая части частотной характеристики.
Отсюда видно, что модуль частотной характеристики (АЧХ) – функция четная, а аргумент (ФЧХ) – нечетная функция частоты.
Нетрудно также заметить, что частотная характеристика является периодической функцией с периодом 2.
Поскольку это так, то выражение для можно интерпретировать как ряд Фурье, в котором коэффициентами являются выборки импульсной характеристики h(n). Отсюда следует, что h(n) может быть определена через как коэффициенты ряда Фурье периодической функции, т. е.
(1.83)
Это представление имеет место не только для импульсных и частотных характеристик линейных систем, но и для любых последовательностей. Например, для произвольной последовательности x(n) можно записать
(1.84)
и
(1.85)
Так как для линейных дискретных систем справедливо выражение:
(1.86)
то с учётом вышеизложенного и из свойств рядов Фурье можно получить следующее равенство
(1.87)
Из этого выражения следует, что выходную последовательность линейной дискретной системы с постоянными параметрами можно получить, вычислив обратное преобразование Фурье от произведения частотной характеристики системы и преобразования Фурье входной последовательности.
Отсюда также можно получить еще одно выражение, определяющее частотную характеристику дискретной системы
(1.88)
т. е. частотная характеристика равна отношению преобразования Фурье выходной последовательности к преобразованию Фурье входной последовательности.
Сравнивая выражения для передаточной и частотной характеристик, легко заметить, что частотная характеристика может быть получена из выражения для передаточной функции путём простой замены на .
Следует отметить, что во всех рассмотренных выше выражениях – это так называемая цифровая частота, которая связана с круговой частотой таким образом:
(1.90)
При этом необходимо отметить, что при дискретизации аналоговых сигналов их спектр согласно теореме отсчетов ограничивается верхней частотой
(1.91)
вследствие чего спектр дискретных сигналов, а также частотные характеристики дискретных систем рассматриваются в диапазоне частот который иногда называют основным диапазоном или основной полосой частот.
В этой связи определенный интерес представляет вопрос о единицах измерения частоты, которые используются в цифровой обработке сигналов.
Как правило, для описания, например, частотных характеристик дискретных систем пользуются двумя единицами измерения частоты – (рад/с) и (Гц). Если частота измеряется в рад/с, то частотная характеристика принимает значения от до или, что эквивалентно, от до (поскольку ). Если пользоваться стандартной единицей измерения частоты в герцах, частотный диапазон будет меняться от 0 до или от 0 до Обе эти единицы можно записать в нормированном виде, т. е. при или, что эквивалентно, Тогда представляющий интерес частотный интервал или основную полосу частот можно выразить одним из шести следующих эквивалентных способов:
(1.92)
(1.93)
Измерение частоты в герцах больше привлекает, если пользоваться графиками частотной характеристики или требованиями к дискретным системам. Однако при оценке численных математических формул в ЦОС удобнее пользоваться величинами, выраженными в рад/с, или их нормированными значениями. Применение нормированных частот позволяет исследовать частотные характеристики дискретных систем и спектры дискретных сигналов в единой полосе частот.
Для ЦОС важны не абсолютные значения частоты сигнала и частоты дискретизации, а их отношение
Пример 1.9. Заданы требования к частотной характеристике дискретного полосового фильтра в виде:
полоса пропускания – (6–10) кГц,
полосы затухания – (0–4) и (12–16) кГц,
частота дискретизации – 32 кГц.
Необходимо:
1. Выразить требования через нормированную частоту f.
2. Перевести требования из стандартных единиц (Гц) в рад/с.
3. Перевести требования п.2 из рад/с в нормированную частоту .
Решение:
1. Граничные частоты, заданные в Гц, можно записать в нормированном виде, просто разделив каждое их значение на частоту дискретизации. В результате получим:
полоса пропускания – (0,1875–0,3125);
полосы затухания – (0–0,125) и (0,375–0,5);
частота дискретизации – 1.
2. Поскольку то для того, чтобы перейти к рад/с, каждую граничную частоту необходимо умножить на 2. Тогда
полоса пропускания – (12 000 – 20 000 ) рад/с,
полосы затухания – (0–8000 ) и (24 000 – 32 000 ) рад/с,
частота дискретизации – 64 000 рад/с.
3. Граничные частоты из п.2 можно представить в нормированном виде, разделив каждую из них на 32 кГц (частоту дискретизации), например,
Таким образом, требования приводятся к виду:
полоса пропускания –
полосы затухания – и
частота дискретизации – 2.
- Общие принципы получения информации в физических исследованиях. Основные цели обработки сигналов. Преимущества цифровых методов обработки сигналов. Примеры практического применения.
- Содержание, этапы, методы и задачи цифровой обработки сигналов. Основные методы и алгоритмы цос.
- Основные направления, задачи и алгоритмы цифровой обработки сигналов
- Дискретные и цифровые сигналы. Основные дискретные последовательности теории цос.
- Линейные дискретные системы с постоянными параметрами. Импульсная характеристика. Физическая реализуемость и устойчивость.
- Линейные разностные уравнения с постоянными параметрами, их практическое значение и решение.
- Соотношение между z-преобразованием и преобразованием Фурье
- Обратное z-преобразование и методы его нахождения: на основе теоремы о вычетах, разложение на простые дроби и в степенной ряд.
- Передаточная функция дискретных систем. Диаграммы нулей и полюсов. Условие устойчивости.
- Частотная характеристика дискретных систем. Амплитудно-частотная и фазочастотная характеристики.
- Фазовая и групповая задержка. Цифровая частота и единицы измерения частоты, которые используются в цифровой обработке сигналов.
- Общая характеристика дискретного преобразования Фурье. Задачи, решаемые с помощью дпф. Дискретный ряд Фурье.
- Дискретный ряд Фурье
- Свойства дискретных рядов Фурье. Периодическая свертка двух последовательностей.
- Дискретное преобразование Фурье. Основные свойства.
- Общая характеристика ряда и интеграла Фурье, дискретного ряда Фурье и дискретного преобразования Фурье. Равенство Парсеваля.
- Прямой метод вычисления дпф. Основные подходы к улучшению эффективности вычисления дпф.
- Алгоритмы бпф с прореживанием по времени. Основные свойства.
- Двоичная инверсия входной последовательности для
- Алгоритмы бпф с прореживанием по частоте. Вычисление обратного дпф.
- Вычисление периодической, круговой и линейной свертки. Алгоритм быстрой свертки. Вычислительная эффективность.
- Вычисление линейной свертки с секционированием.
- Амплитудный спектр, спектр мощности. Определение и алгоритмы получения.
- Оценка спектра мощности на основе периодограммы. Свойства периодограммы. Методы получения состоятельных периодограммных оценок.
- Основные проблемы цифрового спектрального анализа. Взвешивание. Свойства весовых функций. Модифицированные периодограммные оценки спм.
- 1.6.1. Просачивание спектральных составляющих и размывание спектра
- Взвешивание. Свойства весовых функций
- Паразитная амплитудная модуляция спектра
- Эффекты конечной разрядности чисел в алгоритмах бпф
- Метод модифицированных периодограмм
- Метод Блэкмана и Тьюки получения оценки спектральной плотности мощности. Сравнительная оценка качества методов получения спм.
- Сравнение методов оценки спектральной плотности мощности
- Основные характеристики цифровых фильтров. Рекурсивные и нерекурсивные цифровые фильтры, их преимущества и недостатки.
- Структурные схемы бих-фильтров (прямая и каноническая, последовательная и параллельная формы реализации).
- Структурные схемы ких-фильтров (прямая, каскадная, с частотной выборкой, схемы фильтров с линейной фазой, на основе метода быстрой свертки).
- Проектирование цифровых фильтров. Основные этапы и их краткая характеристика.
- Расчет цифровых бих-фильтров по данным аналоговых фильтров. Этапы и требования к процедурам перехода.
- Общая характеристика аналоговых фильтров-прототипов: Баттерворта, Чебышева I и II типа, Золоторева-Каура (эллиптические). Методика применения билинейного z-преобразования.
- Эффекты конечной разрядности чисел в бих-фильтрах. Ошибки квантования коэффициентов, ошибки переполнения и округления. Предельные циклы.
- Расчет цифровых ких-фильтров: методы взвешивания и частотной выборки.
- Эффекты конечной разрядности чисел в ких-фильтрах.
- Общая структурная схема системы цос. Дискретизация сигналов. Теорема отсчетов.
- Погрешности дискретизации. Выбор частоты дискретизации в реальных условиях. Эффект наложения спектров
- Дискретизация узкополосных сигналов
- Выбор частоты дискретизации на практике
- Квантование сигналов. Погрешность квантования. Отношение сигнал/шум и динамический диапазон при квантовании сигналов. Равномерное и неравномерное квантование
- Анализ ошибок
- Отношение сигнал/шум и динамический диапазон
- Способы реализации алгоритмов и систем цос. Понятие реального времени обработки.
- Особенности цос, влияющие на элементную базу, ориентированной на реализацию цифровых систем обработки сигналов.
- Общие свойства процессоров цифровой обработки сигналов и особенности их архитектуры.
- Архитектура Фон Неймана и гарвардская архитектура в пцос. Преимущества и недостатки.
- Универсальные процессоры цос. Общая характеристика процессоров с фиксированной и плавающей точкой (запятой).
- Основные различия между микроконтроллерами, микропроцессорами и сигнальными процессорами.