Общая структурная схема системы цос. Дискретизация сигналов. Теорема отсчетов.
УВЗ (УВХ) – устройство выборки-запоминания (устройство выборки-хранения); АЦП – аналого-цифровой преобразователь; АЛУ – арифметико-логическое устройство; ЦАП – цифро-aналоговый преобразователь.
Как видно, она включает, по крайней мере, три элемента: аналого-цифровой преобразователь (АЦП), процессорный блок, в состав которого входит арифметико-логическое устройство (АЛУ), контроллер и устройство микропрограммного управления, а также запоминающие устройства данных, коэффициентов и команд; цифро-аналоговый преобразователь (ЦАП), установленный на выходе.
Одной из важных научно-технических проблем при создании систем цифровой обработки сигналов является их связь с внешним миром, который предстает перед нами, как мир аналоговых величин и процессов, т.е. процессов, описываемых непрерывными функциями времени и измеряемых параметров.
Непосредственная передача непрерывных во времени сигналов в цифровые устройства и электронно-вычислительные машины невозможна, так как аналоговые и цифровые сигналы имеют разную математическую и физическую форму представления и для их совместимости необходима процедура, известная как аналого-цифровое преобразование.
Математически эта процедура представляет собой преобразование непрерывной функции описывающей реальный сигнал, в последовательность чисел , отнесенных к фиксированным моментам времени и, как правило, делится на две самостоятельные операции или этапы: дискретизацию и квантование.
Под дискретизацией обычно понимается процесс преобразования непрерывной по аргументу функции в функцию дискретного аргумента. Очевидно, что такое преобразование может быть выполнено путем взятия отсчетов функции в определенные дискретные моменты времени .
Легко видеть, что при этом основная задача состоит в правильном выборе интервала дискретизации .
При квантовании происходит замена непрерывных по амплитуде значений дискретного по времени сигнала последовательностью чисел. Иначе говоря, в этом случае производится запись каждого отсчета в виде числа с конечным числом значащих цифр вместо бесконечного, которое требуется для полного представления каждого отсчета.
В основу дискретизации положена принципиальная возможность представления непрерывных сигналов в виде взвешенных сумм:
(3.1)
где - некоторые коэффициенты или отсчеты, характеризующие исходный сигнал в дискретные моменты времени,
- набор элементарных функций, с помощью которых происходит восстановление сигнала по его отсчетам.
Очевидно, что по дискретным значениям исходную функцию можно восстановить с некоторой погрешностью. Часто функцию, полученную в результате восстановления (интерполяции) по значениям , называют воспроизводящей и обозначают каким-либо другим, отличным от исходного сигнала , символом, например . Понятно, что при обработке сигналов дискретизация по времени должна производиться таким образом, чтобы по отсчетным значениям можно было бы получить воспроизводящую функцию , которая с заданной точностью отображает исходную функцию .
Как уже отмечалось, при дискретизации приходится решать вопрос о том, как часто следует брать отсчеты функции, т.е. каким должен быть шаг дискретизации
Оптимальной является такая дискретизация, которая обеспечивает представление исходного сигнала с заданной точностью при минимальном числе выборок, обусловленными необходимостью адекватного представления существенной информации, содержащейся в высокочастотной части спектра сигнала.
Наиболее распространенной является равномерная дискретизация, при которой шаг (интервал) дискретизации остается постоянным:
Величина, обратная интервалу дискретизации, называется частотой дискретизации.
Равномерная дискретизация, как известно, основывается на разложении исходного непрерывного сигнала в ряд Котельникова. Это разложение составляет основу теоремы Котельникова (за рубежом ее называют теоремой Шеннона, или просто теоремой отсчетов). Суть теоремы отсчетов состоит в следующем: непрерывная функция времени , не содержащая частот выше , полностью определяется отсчетами мгновенных значений в точках, отстоящих друг от друга на интервал .
В формулировке автора эта теорема звучит так: любую функции , состоящую из частот от до , можно непрерывно передавать с любой точностью при помощи чисел, следующих друг за другом через с.
- Общие принципы получения информации в физических исследованиях. Основные цели обработки сигналов. Преимущества цифровых методов обработки сигналов. Примеры практического применения.
- Содержание, этапы, методы и задачи цифровой обработки сигналов. Основные методы и алгоритмы цос.
- Основные направления, задачи и алгоритмы цифровой обработки сигналов
- Дискретные и цифровые сигналы. Основные дискретные последовательности теории цос.
- Линейные дискретные системы с постоянными параметрами. Импульсная характеристика. Физическая реализуемость и устойчивость.
- Линейные разностные уравнения с постоянными параметрами, их практическое значение и решение.
- Соотношение между z-преобразованием и преобразованием Фурье
- Обратное z-преобразование и методы его нахождения: на основе теоремы о вычетах, разложение на простые дроби и в степенной ряд.
- Передаточная функция дискретных систем. Диаграммы нулей и полюсов. Условие устойчивости.
- Частотная характеристика дискретных систем. Амплитудно-частотная и фазочастотная характеристики.
- Фазовая и групповая задержка. Цифровая частота и единицы измерения частоты, которые используются в цифровой обработке сигналов.
- Общая характеристика дискретного преобразования Фурье. Задачи, решаемые с помощью дпф. Дискретный ряд Фурье.
- Дискретный ряд Фурье
- Свойства дискретных рядов Фурье. Периодическая свертка двух последовательностей.
- Дискретное преобразование Фурье. Основные свойства.
- Общая характеристика ряда и интеграла Фурье, дискретного ряда Фурье и дискретного преобразования Фурье. Равенство Парсеваля.
- Прямой метод вычисления дпф. Основные подходы к улучшению эффективности вычисления дпф.
- Алгоритмы бпф с прореживанием по времени. Основные свойства.
- Двоичная инверсия входной последовательности для
- Алгоритмы бпф с прореживанием по частоте. Вычисление обратного дпф.
- Вычисление периодической, круговой и линейной свертки. Алгоритм быстрой свертки. Вычислительная эффективность.
- Вычисление линейной свертки с секционированием.
- Амплитудный спектр, спектр мощности. Определение и алгоритмы получения.
- Оценка спектра мощности на основе периодограммы. Свойства периодограммы. Методы получения состоятельных периодограммных оценок.
- Основные проблемы цифрового спектрального анализа. Взвешивание. Свойства весовых функций. Модифицированные периодограммные оценки спм.
- 1.6.1. Просачивание спектральных составляющих и размывание спектра
- Взвешивание. Свойства весовых функций
- Паразитная амплитудная модуляция спектра
- Эффекты конечной разрядности чисел в алгоритмах бпф
- Метод модифицированных периодограмм
- Метод Блэкмана и Тьюки получения оценки спектральной плотности мощности. Сравнительная оценка качества методов получения спм.
- Сравнение методов оценки спектральной плотности мощности
- Основные характеристики цифровых фильтров. Рекурсивные и нерекурсивные цифровые фильтры, их преимущества и недостатки.
- Структурные схемы бих-фильтров (прямая и каноническая, последовательная и параллельная формы реализации).
- Структурные схемы ких-фильтров (прямая, каскадная, с частотной выборкой, схемы фильтров с линейной фазой, на основе метода быстрой свертки).
- Проектирование цифровых фильтров. Основные этапы и их краткая характеристика.
- Расчет цифровых бих-фильтров по данным аналоговых фильтров. Этапы и требования к процедурам перехода.
- Общая характеристика аналоговых фильтров-прототипов: Баттерворта, Чебышева I и II типа, Золоторева-Каура (эллиптические). Методика применения билинейного z-преобразования.
- Эффекты конечной разрядности чисел в бих-фильтрах. Ошибки квантования коэффициентов, ошибки переполнения и округления. Предельные циклы.
- Расчет цифровых ких-фильтров: методы взвешивания и частотной выборки.
- Эффекты конечной разрядности чисел в ких-фильтрах.
- Общая структурная схема системы цос. Дискретизация сигналов. Теорема отсчетов.
- Погрешности дискретизации. Выбор частоты дискретизации в реальных условиях. Эффект наложения спектров
- Дискретизация узкополосных сигналов
- Выбор частоты дискретизации на практике
- Квантование сигналов. Погрешность квантования. Отношение сигнал/шум и динамический диапазон при квантовании сигналов. Равномерное и неравномерное квантование
- Анализ ошибок
- Отношение сигнал/шум и динамический диапазон
- Способы реализации алгоритмов и систем цос. Понятие реального времени обработки.
- Особенности цос, влияющие на элементную базу, ориентированной на реализацию цифровых систем обработки сигналов.
- Общие свойства процессоров цифровой обработки сигналов и особенности их архитектуры.
- Архитектура Фон Неймана и гарвардская архитектура в пцос. Преимущества и недостатки.
- Универсальные процессоры цос. Общая характеристика процессоров с фиксированной и плавающей точкой (запятой).
- Основные различия между микроконтроллерами, микропроцессорами и сигнальными процессорами.