21. Двухфазная модель ад в раздельных осях статора и ротора
1-й и 2-й недостатки математической модели АД в физических переменных устраняются путем перехода к модели АД, в которой статор и ротор представлены в виде двух взаимно перпендикулярных катушек.
В основе двухфазной модели лежит понятие вращающегося обобщенного вектора. Вектор некоторой совокупности физических сигналов называется обобщенным, если его проекции на выбранные оси являются мгновенными значениями физических сигналов.
На рис.21.1 в верхнем ряду показаны оси трех- и двухфазных обмоток, а в нижнем – эквивалентирование обмоток статора и ротора.
Двухфазные оси α-β статора неподвижны в пространстве, причем ось α совмещена с осью обмотки 1А статора. Двухфазные оси d-q ротора вращаются в пространстве вместе ротором с частотой ωЭЛ, причем ось d совмещена с осью обмотки 2А ротора. Обобщенный вектор потокосцепления (или напряжения, или тока) вращается в пространстве с частотой ω1 напряжения питания статора АД. Проекции на оси обмоток статора являются мгновенными значениями потокосцеплений этих обмоток, что доказывается вычислениями по построениям на рис.21.1:
(21.1)
Проекции на оси α-β являются мгновенными значениями потокосцеплений по этим осям, что доказывается вычислениями:
(21.2)
Можно утверждать обратное, что потокосцепления трехфазных обмоток, определяемые формулами (21.1), и потокосцепления двухфазных обмоток, определяемые формулами (21.2), дают одно и то же результирующее потокосцепление статора. Значит, после подмены реальной трехфазной обмотки на двухфазную с взаимно-перпендикулярными осями α и β, результирующее потокосцепление статора, которое вращается в пространстве с частотой ω1, работа АД не изменится.
Точно также можно заменить трехфазную обмотку ротора, а также многофазную обмотку короткозамкнутого ротора, на двухфазную обмотку с взаимно-перпендикулярными осями d и q. Потокосцепления таких обмоток согласно рис.21.1 вычисляются по формулам:
(21.3)
Теперь можно составить систему дифференциальных уравнений для АД с двухфазными обмотками статора и ротора
(21.4)
где суммарные потокосцепления Ψα, Ψβ, Ψd и Ψq всех четырех двухфазных обмоток с учетом построений на рис.21.1 определятся формулами:
(21.5)
Напряжения питания uα, uβ, ud и uq двухфазных обмоток изменяются с частотами трехфазного АД - в статоре с частотой ω1, в роторе с частотой ω2.
Преимущества двухфазной модели АД с раздельными осями статора (оси α-β) и ротора (оси d-q):
1) количество дифференциальных уравнений обмоток уменьшилось до 4-х (в трехфазной модели 6 уравнений);
2) количество слагаемых в выражениях полных потокосцеплений обмоток уменьшилось до 3-х (в трехфазной модели 6 слагаемых).
Недостаток только один: выражения потокосцеплений (21.5) являются нелинейными функциями, поэтому и дифференциальные уравнения (21.4) также нелинейные. Решить эти уравнения аналитически невозможно.
- Электропривода
- Часть 2: Замкнутые системы электропривода
- Тематика лекционных занятий
- Содержание
- Введение
- 1. Виды схем регулирования координат электропривода и показатели качества
- Показатели качества для разомкнутого эп
- 2. Методы последовательной коррекции и модального управления с настройками на технический и симметричный оптимум
- Настройка на симметричный оптимум
- 3. Метод последовательной коррекции с подчиненным регулированием координат
- Синтез регулятора подчиненного контура
- Синтез регулятора основного контура
- 4. Модель эп с двигателем постоянного тока независимого возбуждения с жесткими связями
- 5. Модель эп с двигателем постоянного тока независимого возбуждения с упругими связями
- 6. Автоматическое регулирование момента в системе уп-д с п-регулятором
- 7. Автоматическое регулирование момента в системе уп-д с настройками на технический и симметричный оптимумы
- 8. Автоматическое регулирование частоты вращения в системе уп-д с п-регулятором
- 9. Автоматическое регулирование частоты вращения в системе уп-д, настроенной на технический оптимум
- 10. Автоматическое регулирование частоты вращения в двухконтурной системе уп-д, настроенной на технический оптимум
- 11. Автоматическое регулирование частоты вращения в двухконтурной системе уп-д, настроенной на симметричный оптимум
- 12. Автоматическое регулирование положения в системе уп-д с подчиненным регулированием
- 13. Уравнения ад в комплексных переменных. Электрические схемы замещения ад. Механические характеристики
- 14. Автоматическое регулирование частоты вращения ад с короткозамкнутым ротором изменением величины напряжения питания
- Разомкнутое регулирование
- Замкнутое регулирование
- 15. Автоматическое регулирование момента ад с короткозамкнутым ротором при питании его от пч с аин
- 16. Автоматическое регулирование момента ад с короткозамкнутым ротором при питании его от пч с аит
- 17. Автоматическое регулирование частоты вращения ад с короткозамкнутым ротором при питании его от пч
- Работа сар с п-регулятором скорости (рис.17.2)
- Работа сар с и-регулятором скорости (рис.17.3)
- 18. Импульсное регулирование частоты вращения ад с фазным ротором
- 19. Сар частоты вращения ад с фазным ротором на базе асинхронно-вентильного каскада (авк)
- 20. Обобщенная математическая модель ад в физических переменных
- 21. Двухфазная модель ад в раздельных осях статора и ротора
- 22. Двухфазная модель ад в осях u-V, общих для статора и ротора, вращающихся в пространстве с произвольной частотой
- 23. Дифференциальные уравнения обмоток ад в осях u-V. Выражения вращающего момента
- 24. Уравнения и структурная схема ад в осях α-β, общих для статора и ротора. Расчеты токов обмоток
- 25. Уравнения ад в осях х-у, ориентированных
- 26. Структурная схема ад в осях х-у, ориентированных
- Преобразования уравнения цепи статора по оси у
- Преобразования уравнения цепи статора по оси х
- 27. Структурная схема системы векторного управления ад
- 28. Блоки преобразователей фаз аэп с векторным управлением ад
- 29. Блоки восстановления потокосцепления ротора и тригонометрического анализатора
- 30. Блоки преобразования координат и блок компенсации. Подсистема ввода информации
- 31. Векторное управление ад с использованием наблюдателя потокосцепления ротора
- 32. Векторное управление ад с использованием наблюдателя частоты вращения
- Литература