Работа сар с и-регулятором скорости (рис.17.3)
До момента времени t=0 (точка 1 на всех графиках) АД работал с установившейся частотой вращения ωун. Так как регулирование астатическое, то не существует ошибки регулирования, и установившееся значение частоты ωун равно заданному ωзн.
В момент времени t=0 скачком изменяется сигнал задания ωзс. Далее изменяются сигнал uЗМ и прямо пропорциональный ему момент М АД. За счет инерционности И-регулятора сигнал ωЗМ нарастает плавно, а механическая характеристика М изменяется по спирали 1-2. В точке 2 заданная ωзк и фактическая ω частоты вращения становятся одинаковыми и сигнал на входе И-регулятора обращается в ноль. Сигнал uЗМ перестаёт изменяться, а момент М АД достигает максимального значения. На участке 2-3-4 устанавливается неравенство ω>ωзк, входной сигнал интегратора (uЗС –uОСС) становится отрицательным и выходное напряжение uЗМ интегратора уменьшается а вслед за ним уменьшается момент М АД. На участке 2-3 избыточный момент положительный и частота вращения продолжает расти. На участке 3-4 избыточный момент становится отрицательным и частота вращения уменьшается. На участке 4-5 устанавливается неравенство ω<ωзк, входной сигнал интегратора (uЗС –uОСС) становится положительным и выходное напряжение uЗМ интегратора увеличивается а вслед за ним увеличивается момент М АД. После точки 5 процесс аналогичен процессу на участке 1-2. Затухающий переходный процесс заканчивается выходом на новое значение установившейся частоты вращения ωук, которая точно равна заданной ωзк.
- Электропривода
- Часть 2: Замкнутые системы электропривода
- Тематика лекционных занятий
- Содержание
- Введение
- 1. Виды схем регулирования координат электропривода и показатели качества
- Показатели качества для разомкнутого эп
- 2. Методы последовательной коррекции и модального управления с настройками на технический и симметричный оптимум
- Настройка на симметричный оптимум
- 3. Метод последовательной коррекции с подчиненным регулированием координат
- Синтез регулятора подчиненного контура
- Синтез регулятора основного контура
- 4. Модель эп с двигателем постоянного тока независимого возбуждения с жесткими связями
- 5. Модель эп с двигателем постоянного тока независимого возбуждения с упругими связями
- 6. Автоматическое регулирование момента в системе уп-д с п-регулятором
- 7. Автоматическое регулирование момента в системе уп-д с настройками на технический и симметричный оптимумы
- 8. Автоматическое регулирование частоты вращения в системе уп-д с п-регулятором
- 9. Автоматическое регулирование частоты вращения в системе уп-д, настроенной на технический оптимум
- 10. Автоматическое регулирование частоты вращения в двухконтурной системе уп-д, настроенной на технический оптимум
- 11. Автоматическое регулирование частоты вращения в двухконтурной системе уп-д, настроенной на симметричный оптимум
- 12. Автоматическое регулирование положения в системе уп-д с подчиненным регулированием
- 13. Уравнения ад в комплексных переменных. Электрические схемы замещения ад. Механические характеристики
- 14. Автоматическое регулирование частоты вращения ад с короткозамкнутым ротором изменением величины напряжения питания
- Разомкнутое регулирование
- Замкнутое регулирование
- 15. Автоматическое регулирование момента ад с короткозамкнутым ротором при питании его от пч с аин
- 16. Автоматическое регулирование момента ад с короткозамкнутым ротором при питании его от пч с аит
- 17. Автоматическое регулирование частоты вращения ад с короткозамкнутым ротором при питании его от пч
- Работа сар с п-регулятором скорости (рис.17.2)
- Работа сар с и-регулятором скорости (рис.17.3)
- 18. Импульсное регулирование частоты вращения ад с фазным ротором
- 19. Сар частоты вращения ад с фазным ротором на базе асинхронно-вентильного каскада (авк)
- 20. Обобщенная математическая модель ад в физических переменных
- 21. Двухфазная модель ад в раздельных осях статора и ротора
- 22. Двухфазная модель ад в осях u-V, общих для статора и ротора, вращающихся в пространстве с произвольной частотой
- 23. Дифференциальные уравнения обмоток ад в осях u-V. Выражения вращающего момента
- 24. Уравнения и структурная схема ад в осях α-β, общих для статора и ротора. Расчеты токов обмоток
- 25. Уравнения ад в осях х-у, ориентированных
- 26. Структурная схема ад в осях х-у, ориентированных
- Преобразования уравнения цепи статора по оси у
- Преобразования уравнения цепи статора по оси х
- 27. Структурная схема системы векторного управления ад
- 28. Блоки преобразователей фаз аэп с векторным управлением ад
- 29. Блоки восстановления потокосцепления ротора и тригонометрического анализатора
- 30. Блоки преобразования координат и блок компенсации. Подсистема ввода информации
- 31. Векторное управление ад с использованием наблюдателя потокосцепления ротора
- 32. Векторное управление ад с использованием наблюдателя частоты вращения
- Литература