3. Физическая реализуемость
Линейная стационарная система физически реализуема, если величина отклика при п = п0 зависит только от отсчетов входной последовательности с номерами п п0. Для линейных стационарных систем это означает, что импульсная характеристика h(п) равна нулю при п < 0.
Некоторые системы, имеющие большое теоретическое значение, физически нереализуемы. К ним относятся идеальный фильтр нижних частот и идеальный дифференциатор. Поэтому значительная часть теории фильтров посвящена методам аппроксимации физически нереализуемых систем реализуемыми системами.
Линейная стационарная система устойчива, если при любой ограниченной входной последовательности выходная последовательность также ограничена. Необходимым и достаточным условием устойчивости системы является следующее требование к импульсной характеристике:
. (2)
Необходимость и достаточность условия (2) можно доказать,
рассмотрев ограниченную последовательность
x(п) =
Если предположить, что условие (2) не удовлетворяется, т. е.
,
то согласно (1) при п = 0 отклик равен
y(0) = = = = .
Таким образом, последовательность у(0) не ограничена, так что неравенство (2.2) – необходимое условие устойчивости системы. Для доказательства достаточности предположим, что условие (2) выполняется, а на вход поступает ограниченная последовательность х(п),
|х(п)| M.
- Конспект лекций по цос
- Частотная область
- Реальные сигналы
- Ширина полосы
- Дискретизация
- Период дискретизации и время дискретизации
- Непериодические мгновенные значения
- Периодическая дискретизация
- Дискретизация с очень высокой частотой
- Дискретизация с частотой Найквиста
- Дискретизация с частотой ниже частоты Найквиста
- Спектры реальных сигналов
- Ограничение спектра
- Формирование цифрового сигнала
- Дискретизация
- Квантование
- Точность
- Ошибка квантования
- Уменьшение ошибок квантования
- Дополнительная информация
- Практически используемые ацп
- Ацп с последовательным приближением
- Двунаклонные ацп
- Сглаживание на выходе
- Коммерческие ацп и цап
- Функциональные блоки платы dsk
- Выводы по лекциям
- Лекция 2.
- 1. Числовые последовательности
- 2. Представление числовых последовательносте
- Представление чисел
- Кодирование чисел
- Ошибки квантования
- Дискретные линейные системы
- 1. Общие сведения
- 2. Линейные системы с постоянными параметрами
- 3. Физическая реализуемость
- Из (2.1) получаем
- Лекция 3
- 1. Частотные характеристики
- 2. Частотные характеристики систем первого порядка
- 3. Частотные характеристики систем второго порядка
- Лекция 4
- 1. Дискретный ряд Фурье
- 2. Единицы измерения частоты
- 4. Теорияz-преобразования в задачах анализа и синтеза линейных систем применяется преобразование Лапласа, которое приводит дифференциальные уравнения в алгебраические уравнения.
- Для упрощения анализа можно перейти к новой переменной z, связанной с p соотношением
- Такая сумма, если она существует, называется z-преобразовани-ем последовательности {xk}. Ясно, что комплексная функция (5.16) определена лишь для тех значений z, при которых степенной ряд сходится.
- Примеры z-преобразований на основании (16):
- Бесконечная дискретная последовательность
- 5. Соотношение между z–преобразованием и
- 6. Обратное z-преобразование
- 1. Дискретное преобразование Фурье
- Определим набор коэффициентов дпф
- 2. Свойства дпф
- 3. Свойства симметрии
- 3. Спектральный анализ в точках z-плоскости
- Импульсная характеристика
- 2. Линейная свертка конечных последовательностей
- 3. Секционированные свертки
- 1. Уравнения цифровых фильтров
- 2. Структурные схемы цифровых фильтров
- 1. Цифровые фильтры
- Третий метод проектирования – оптимизация фильтров с минимаксной ошибкой
- !. Цифровые фильтры с бесконечными импульсными характеристиками
- Всепропускающего фильтра 2-го порядка
- 1) Ось из s–плоскости должна отображаться в единичную окружность на z – плоскости;
- 6. Прямые методы расчета цифровых фильтров
- Быстрое преобразование фурье
- 1. Основы алгоритмов бпф
- 2. Алгоритм бпф с прореживанием по времени
- 3. Алгоритм бпф с прореживанием по частоте
- 4. Применение метода бпф для вычисления одпф
- 12.5. Применение бпф для вычисления реакции цифрового фильтра