Цифровая обработка сигналов Лекции / Цифровая обработка сигналов Лекции
4. Применение метода бпф для вычисления одпф
По определению (12.2) ОДПФ x(n) N-точечной последовательности X(k), k = 0, 1, …, N – 1, выражается соотношением
x(n) = ,(19)
причем в общем случае и x(n), и x(k) — комплексные функции. Пусть x(n) и X(k) — последовательности, комплексно сопряженные соответственно с x(n) и X(k). Согласно (12.19) можно записать
x*(n) = , (20)
Выражение суммы в правой части (12.20) есть прямое ДПФ последовательности X*(k), k = 0, ...., N – 1 и, следовательно, эта сумма может быть вычислена при помощи рассмотренных алгоритмов и программ БПФ.
Таким образом, обеспечивается вычисление последовательности Nx*(n) и для определения x(n) остается взять комплексно сопряженное с Nx*(n) выражение и разделить его на N:
(21)
Содержание
- Конспект лекций по цос
- Частотная область
- Реальные сигналы
- Ширина полосы
- Дискретизация
- Период дискретизации и время дискретизации
- Непериодические мгновенные значения
- Периодическая дискретизация
- Дискретизация с очень высокой частотой
- Дискретизация с частотой Найквиста
- Дискретизация с частотой ниже частоты Найквиста
- Спектры реальных сигналов
- Ограничение спектра
- Формирование цифрового сигнала
- Дискретизация
- Квантование
- Точность
- Ошибка квантования
- Уменьшение ошибок квантования
- Дополнительная информация
- Практически используемые ацп
- Ацп с последовательным приближением
- Двунаклонные ацп
- Сглаживание на выходе
- Коммерческие ацп и цап
- Функциональные блоки платы dsk
- Выводы по лекциям
- Лекция 2.
- 1. Числовые последовательности
- 2. Представление числовых последовательносте
- Представление чисел
- Кодирование чисел
- Ошибки квантования
- Дискретные линейные системы
- 1. Общие сведения
- 2. Линейные системы с постоянными параметрами
- 3. Физическая реализуемость
- Из (2.1) получаем
- Лекция 3
- 1. Частотные характеристики
- 2. Частотные характеристики систем первого порядка
- 3. Частотные характеристики систем второго порядка
- Лекция 4
- 1. Дискретный ряд Фурье
- 2. Единицы измерения частоты
- 4. Теорияz-преобразования в задачах анализа и синтеза линейных систем применяется преобразование Лапласа, которое приводит дифференциальные уравнения в алгебраические уравнения.
- Для упрощения анализа можно перейти к новой переменной z, связанной с p соотношением
- Такая сумма, если она существует, называется z-преобразовани-ем последовательности {xk}. Ясно, что комплексная функция (5.16) определена лишь для тех значений z, при которых степенной ряд сходится.
- Примеры z-преобразований на основании (16):
- Бесконечная дискретная последовательность
- 5. Соотношение между z–преобразованием и
- 6. Обратное z-преобразование
- 1. Дискретное преобразование Фурье
- Определим набор коэффициентов дпф
- 2. Свойства дпф
- 3. Свойства симметрии
- 3. Спектральный анализ в точках z-плоскости
- Импульсная характеристика
- 2. Линейная свертка конечных последовательностей
- 3. Секционированные свертки
- 1. Уравнения цифровых фильтров
- 2. Структурные схемы цифровых фильтров
- 1. Цифровые фильтры
- Третий метод проектирования – оптимизация фильтров с минимаксной ошибкой
- !. Цифровые фильтры с бесконечными импульсными характеристиками
- Всепропускающего фильтра 2-го порядка
- 1) Ось из s–плоскости должна отображаться в единичную окружность на z – плоскости;
- 6. Прямые методы расчета цифровых фильтров
- Быстрое преобразование фурье
- 1. Основы алгоритмов бпф
- 2. Алгоритм бпф с прореживанием по времени
- 3. Алгоритм бпф с прореживанием по частоте
- 4. Применение метода бпф для вычисления одпф
- 12.5. Применение бпф для вычисления реакции цифрового фильтра