8.4. Управляемость и наблюдаемость сау
Описание систем в пространстве состояний с успехом используется для синтеза (оптимальной коррекции) систем управления. Для этого оптимальное управление U(t) формируют как функцию доступных измерению координат состояния системы, т.е. реализуют оптимальный регулятор состояния. Возможность создания замкнутой по вектору состояния оптимальной системы управления предполагает, что она удовлетворяет условиям управляемости и наблюдаемости.
Линейная стационарная система управления (8.3) является управляемой, если существует такое управление U(t) размерности , которое может перевести систему из произвольного начального состоянияX(0) в заданное конечное состояние X(t). Это условие записывается в виде
, (8.19)
где H – гиперматрица управляемости порядка .
Условие (8.19) означает, что система (8.3) будет полностью управляемой, если ранг гиперматрицы H равен n, т. е. матрица управляемости содержит n независимых векторов-столбцов, а, следовательно, ее определитель не равен нулю.
Если управление является скалярной функцией времени, т. е. U(t)=u(t), то гиперматрица H будет представлять собой квадратную матрицу порядка .
Управляемость системы можно определить и по структуре сигнального графа системы – он должен иметь пути от управляющего воздействия к каждой из переменных состояния.
Рассмотрим систему третьего порядка, описываемую передаточной функцией
. (8.20)
Ей соответствует сигнальный граф в переменных состояния, приведенный на рис. 8.6.
Рис. 8.6. Сигнальный граф системы третьего порядка
Видно, что существуют пути от управляющего воздействия u ко всем переменным состояния системы, следовательно, она является управляемой.
Для объекта (8.20) можно записать матричное дифференциальное уравнение
,
где X – вектор состояния системы, ,n = 3.
Тогда матрица управляемости
,
а, следовательно, убеждаемся, что система является управляемой.
Понятие наблюдаемости системы связано с возможностью оценки ее переменных состояния.
Линейная стационарная система управления, описываемая уравнениями (8.3), (8.5) является наблюдаемой, если существует конечное время T такое, что в результате наблюдения выходной переменной Y(t), , может быть определено начальное состояниеX(0) при заданном управлении U(t).
Это условие записывается в виде
, (8.21)
где G – гиперматрица наблюдаемости порядка ,q – размерность вектора Y(t).
Условие (8.21) означает, что система будет полностью наблюдаемой, если ранг гиперматрицы G равен n, т. е. матрица наблюдаемости содержит n независимых векторов-столбцов а, следовательно, ее определитель не равен нулю.
Если объект управления одномерный, т. е. выходная переменная одна, то матрица K является вектором-строкой размерности , а матрица наблюдаемостиG будет представлять собой квадратную матрицу порядка . Условие наблюдаемости для одномерных САУ можно записать в виде
. (8.22)
Система будет наблюдаемой, если каждая переменная состояния вносит свой вклад в формирование вектора выходных переменных Y(t).
Наблюдаемость системы можно определить и по структуре сигнального графа системы – он должен иметь пути от каждой переменной состояния к выходной переменной.
Для объекта (8.20) выходной переменной является координата y(t), равная переменной x1(t) , а, следовательно, матрица K имеет вид:
.
Условие наблюдаемости САУ (9.19) можно записать в виде:
.
Система является наблюдаемой, поскольку ранг матрицы G полный и каждая переменная состояния вносит свой вклад в формирование выходной переменной y(t). Из рассмотрения графа системы (см. рис. 9.6) также следует, что от каждой координаты состояния имеются пути к выходной переменной, а, значит, система полностью наблюдаема.
Для автоматизации исследования систем управления на предмет управляемости и наблюдаемости в системе программирования MATLAB имеются функции соответственно ctrb и obsv [6, 16].
- Министерство образования Российской федерации
- Теория автоматического управления
- Удк 62-52
- Содержание
- Используемая аббревиатура
- Введение
- Основные понятия. Задачи теории управления. Принципы автоматического управления.
- 2. Классификация технических систем управления
- 3. Основные элементы, функциональные блоки и структуры сау. Электромеханическая сау.
- 4. Анализ непрерывных линейных сау. Способы описания и характеристики линейных сау.
- 4.1. Методы описания и исследования динамических управляемых объектов в частотной и временной области
- 4.2. Статические и динамические характеристики сау
- 4.3. Переходные и импульсные характеристики сау `
- 4.4. Уравнение Лагранжа 2-го рода и дифференциальные уравнения
- 4.5. Линеаризация сау
- 5. Структурные методы исследования линейных сау
- 5.1. Преобразование Лапласа, передаточные функции и матрицы
- 5.2. Типовые динамические звенья и структурные схемы сау
- 5.3. Способы соединения звеньев. Правила преобразования структурных схем
- 6. Устойчивость линейных систем управления
- 6.1. Характеристическое уравнение линейной сау. Влияние корней характеристического полинома на устойчивость сау
- 6.2. Алгебраические критерии устойчивости
- 6.2.1. Критерий Гурвица Формулировка критерия: автоматическая система, описываемая характеристическим уравнением n-го порядка
- 6.2.2. Критерий Рауса
- 6.3. Частотные критерии устойчивости
- 6.3.1. Критерий Михайлова
- 6.3.2. Критерий Найквиста
- 7. Качество систем управления
- 7.1. Прямые показатели качества регулирования
- 7.2. Косвенные показатели качества регулирования
- 7.2.1. Оценка качества регулирования по расположению корней характеристического уравнения
- 8. Метод пространства состояний
- 8.1. Векторно-матричное описание сау
- 8.2. Схемы пространства состояний
- 8.3. Понятие матрицы перехода (переходных состояний)
- 8.4. Управляемость и наблюдаемость сау
- 9. Синтез линейных непрерывных сау
- 9.1. Общая постановка задачи синтеза
- 9.2. Типовые параметрически оптимизируемые регуляторы (корректирующие звенья) класса “вход-выход”
- 9.3. Синтез систем с подчиненным регулированием координат
- Методика структурно-параметрического синтеза контуров регулирования сау по желаемой передаточной функции
- 10. Дискретные и дискретно-непрерывные сау
- 10.1. Дискретизация и модуляция сигналов. Аналих линейных импульсных сау
- 10.2. Математическое описание дискретных систем
- 10.2.1. Z-преобразование и дискретные передаточные функции
- 10.2.2. Разностные уравнения
- 10.2.3. Описание дискретных сау в переменных состояния
- 10.2.4. Описание дискретно-непрерывных сау в пространстве состояний
- 10.3. Синтез цифровых систем управления
- 10.3.1. Метод дискретизации аналоговых регуляторов
- 10.3.2. Метод переменного коэффициента усиления
- Литература