8.1. Векторно-матричное описание сау
Состояние системы– это совокупность значений переменных системы (координат состояния), существенных с точки зрения решаемой задачи. В общем случае, в это число включают не только выходные и внутренние переменные САУ, но и задающие воздействия, и доминирующие возмущающие воздействия внешней среды. Чем полнее достоверной информации о состоянии системы в текущий момент времени, тем проще определить будущие значения всех ее переменных. Инженерно-технический персонал, разрабатывающий и эксплуатирующий технические системы управления, оперирует, как правило, с такими физическими переменными, которые могут быть измерены с помощью соответствующих датчиков. К таким физическим переменным САУ относят ускорение, скорость, перемещение, давление, расход, температуру, уровень и т. п. Координатами датчиков технологических координат САУ являются другие переменные - напряжение, ток, частота следования импульсов, двоичный код и т. п., что дает исследователю возможность выбора для синтеза и анализа необходимого набора координат состояния САУ.
Векторно-матричная модельмногомерной, нелинейной, нестационарной САУ записывается в виде [6, 10, 11, 19]
,
, (8.1)
где X(t),U(t), F(t),Y(t) – соответственно векторы состояния, управления, возмущения и выходных (управляемых) координат системы,
– вектор первых производных координат состояния,
– нелинейные, нестационарные функции координат состояния, управления и возмущения системы.
В уравнении (8.1) вектор управления U(t) является, в общем случае, некоторой нелинейной нестационарной функцией задающих координат, координат состояния и возмущения САУ и призван обеспечить оптимальное управление системой. Описание многомерных, нелинейных, нестационарных САУ в форме (8.1) не позволяет, как правило, получить инженерное решение задачи структурно-параметрического синтеза оптимального управленияU(t) или такое решение приводит к неоправданным затратам на реализацию (в техническом или экономическом аспектах). В большинстве случаев такие модели сводят к одномерным или многомерным линейным (линеаризованным) квазистационарным моделям, для которых имеются развитые методы и инженерные методики синтеза оптимального управления.
Линейную (линеаризованную) модельмногомерной стационарной (квазистационарной) САУ представляют в виде системы обыкновенных дифференциальных уравнений первого порядка в форме Коши:
,
, (8.2)
……………………………………………………
.
Эту же систему дифференциальных уравнений можно представить в векторно-матричной форме [6, 11, 19]:
, (8.3)
где - векторы (векторы-столбцы) соответственно состояния и управления САУ,
,;
- символ транспонирования (иногда для обозначения транспонирования применяют буквенный символ “т”);
- стационарные матрицы соответственно состояния и управления,
,.
В общем случае, на объект управления помимо управляющих воздействий действуют возмущающие воздействия. В этом случае векторно-матричную модель системы представляют в виде
, (8.4)
где - вектор-столбец возмущающих воздействий САУ,C– стационарная матрица возмущений,
,
.
Выходные (управляемые) переменные не всегда непосредственно принадлежат вектору состояния. В линейных САУ они линейно связаны с переменными состояния, управляющими и возмущающими переменными. В этом случае к уравнениям (8.3), (8.4) присоединяют алгебраические линейные уравнения
(8.5)
или , (8.6)
где - вектор выходных переменных САУ,;
K,L,M– стационарные матрицы соответственно размерностей (rn), (rm), (rd).
Следует отметить, что приведенные уравнения (8.1)…(8.6) дают описание лишь объекта управления или разомкнутой системы, если вектор управленияU(t) не является функцией координат состояния САУ. В замкнутых линейных САУ управление обычно формируют как линейную форму координат состояния и, в общем случае, возмущения САУ.
В качестве примера приведем векторно-матричное описание ранее рассматриваемого электродвигателя постоянного тока как объекта регулирования по цепи якоря. Пусть выходной (регулируемой) координатой является скорость вращения двигателя. Полагая, что напряжение возбуждения , а магнитный поток, математическую модель электродвигателя можно представить в виде:
,
. (8.7)
Воспользуемся векторно-матричной моделью линейных САУ в виде (8.4), (8.5). Зададимся векторами состояния, управления и возмущения в виде:
;;
(8.8)
По уравнениям (8.7) найдем матрицы состояния, управления и возмущения:
;;. (8.9)
Поскольку выходная переменная всего одна и ей является координата состояния , уравнение выхода преобразуется к скалярной форме
. (8.10)
По описанию системы в форме векторно-матричных уравнений (ВМУ) можно непосредственно получить эквивалентную передаточную функцию (ПФ) и, наоборот, зная ВМУ системы, можно получить ее ПФ. Для этого в системе MATLABимеется две функции: функцияtf и функция ss.
Пусть ВМУ системы имеет вид (8.3), (8.5). Применительно к системе MATLABВМУ записывают в виде
(8.11)
Для получения ВМУ в системе MATLABнеобходимо определить функциюss(A,B,C,D). Для преобразования ВМУ к ПФ системы необходимо записать:
sys_ss=ss(A,B,C,D); % Формирование ВМУ системы;
sys_tf=tf(sys_ss), % Преобразование ВМУ к ПФ системы.
Для обратного преобразования ПФ к ВМУ необходимо записать:
sys_tf=tf(num,den); % Формирование ПФ системы;
sys_ss=ss(sys_tf); Преобразование ПФ к ВМУ системы.
Рассмотрим пример. Пусть ПФ системы имеет вид
.
Тогда запишем скрипт преобразования ПФ к ВМУ и обратного преобразования ВМУ к ПФ:
num=[0.4];
den=[1 2 1 0.6];
sys_tf=tf(num,den); % Формирование ПФ системы;
sys_ss=ss(sys_tf); %Преобразование ПФ к ВМУ системы;
a =
x1 x2 x3
x1 -2 -0.5 -0.075
x2 2 0 0
x3 0 4 0
b =
u1
x1 0.25
x2 0
x3 0
c =
x1 x2 x3
y1 0 0 0.2
d =
u1
y1 0
sys_tf=tf(sys_ss) % Преобразование ВМУ к ПФ системы
Transfer function:
0.4
--------------------- .
s^3 + 2 s^2 + s + 0.6
- Министерство образования Российской федерации
- Теория автоматического управления
- Удк 62-52
- Содержание
- Используемая аббревиатура
- Введение
- Основные понятия. Задачи теории управления. Принципы автоматического управления.
- 2. Классификация технических систем управления
- 3. Основные элементы, функциональные блоки и структуры сау. Электромеханическая сау.
- 4. Анализ непрерывных линейных сау. Способы описания и характеристики линейных сау.
- 4.1. Методы описания и исследования динамических управляемых объектов в частотной и временной области
- 4.2. Статические и динамические характеристики сау
- 4.3. Переходные и импульсные характеристики сау `
- 4.4. Уравнение Лагранжа 2-го рода и дифференциальные уравнения
- 4.5. Линеаризация сау
- 5. Структурные методы исследования линейных сау
- 5.1. Преобразование Лапласа, передаточные функции и матрицы
- 5.2. Типовые динамические звенья и структурные схемы сау
- 5.3. Способы соединения звеньев. Правила преобразования структурных схем
- 6. Устойчивость линейных систем управления
- 6.1. Характеристическое уравнение линейной сау. Влияние корней характеристического полинома на устойчивость сау
- 6.2. Алгебраические критерии устойчивости
- 6.2.1. Критерий Гурвица Формулировка критерия: автоматическая система, описываемая характеристическим уравнением n-го порядка
- 6.2.2. Критерий Рауса
- 6.3. Частотные критерии устойчивости
- 6.3.1. Критерий Михайлова
- 6.3.2. Критерий Найквиста
- 7. Качество систем управления
- 7.1. Прямые показатели качества регулирования
- 7.2. Косвенные показатели качества регулирования
- 7.2.1. Оценка качества регулирования по расположению корней характеристического уравнения
- 8. Метод пространства состояний
- 8.1. Векторно-матричное описание сау
- 8.2. Схемы пространства состояний
- 8.3. Понятие матрицы перехода (переходных состояний)
- 8.4. Управляемость и наблюдаемость сау
- 9. Синтез линейных непрерывных сау
- 9.1. Общая постановка задачи синтеза
- 9.2. Типовые параметрически оптимизируемые регуляторы (корректирующие звенья) класса “вход-выход”
- 9.3. Синтез систем с подчиненным регулированием координат
- Методика структурно-параметрического синтеза контуров регулирования сау по желаемой передаточной функции
- 10. Дискретные и дискретно-непрерывные сау
- 10.1. Дискретизация и модуляция сигналов. Аналих линейных импульсных сау
- 10.2. Математическое описание дискретных систем
- 10.2.1. Z-преобразование и дискретные передаточные функции
- 10.2.2. Разностные уравнения
- 10.2.3. Описание дискретных сау в переменных состояния
- 10.2.4. Описание дискретно-непрерывных сау в пространстве состояний
- 10.3. Синтез цифровых систем управления
- 10.3.1. Метод дискретизации аналоговых регуляторов
- 10.3.2. Метод переменного коэффициента усиления
- Литература