7.1. Прямые показатели качества регулирования
Прямые показатели качестваопределяются по виду переходных характеристик. При этом качество систем стабилизации оценивают по виду переходной характеристики по отношению к возмущающим воздействиям, качество систем программного управления – по отношению к задающим воздействиям, качество следящих САУ оценивают как по отношению к возмущающим, так и задающим воздействиям.
При анализе качественных показателей систем во временной области помимо ступенчатого воздействия к типовым тестовым воздействиям относят также линейное, параболическое и импульсное воздействия. Реакцию на один тестовый сигнал можно всегда выразить через реакцию на другой тестовый сигнал. Поскольку ступенчатый входной сигнал является наиболее простым, то именно он обычно выбирается в качестве тестового сигнала. Реакция системы на импульсный тестовый сигнал представляет интерес только в тех случаях, если в реальных условиях система подвержена воздействию очень коротких импульсов с достаточно большой амплитудой.
Графики переходных процессов получают экспериментально или путем решения дифференциального уравнения, описывающего систему в координатах “вход-выход”.
За основные показатели качества регулирования по виду переходных процессов принимают (рис. 7.1):
Рис. 7.1. Прямые показатели качества регулирования
1) время регулированияtр(время установления, время переходного процесса) – момент времени, после которого переходная характеристика остается внутри зоны, отличающейся от ступенчатого входного воздействияxвхна ±δ%; эта зона установления переходного процесса принимается, как правило, равной (2…5)%;
2) время нарастания регулированияtнр– время первого согласования переходной характеристики с входным воздействием;
3) время максимума tм переходной характеристики– момент времени, при котором переходная характеристика достигает своего максимального значенияymax;
4) перерегулирование– относительная величина, рассчитываемая по формуле
;(7.1)
квазипериод колебанийT0– усредненный период колебаний;
6) число колебанийmза время регулированияtр, определяемое по формуле
.
Проведение экспериментальных исследований для определения прямых оценок качества регулирования не всегда допустимо по условиям технологии, а численное решение дифференциального уравнения может оказаться достаточно трудоемкой задачей и требует применения вычислительной техники. В связи с этим в инженерной практике широкое применение нашли косвенные оценки качества.
- Министерство образования Российской федерации
- Теория автоматического управления
- Удк 62-52
- Содержание
- Используемая аббревиатура
- Введение
- Основные понятия. Задачи теории управления. Принципы автоматического управления.
- 2. Классификация технических систем управления
- 3. Основные элементы, функциональные блоки и структуры сау. Электромеханическая сау.
- 4. Анализ непрерывных линейных сау. Способы описания и характеристики линейных сау.
- 4.1. Методы описания и исследования динамических управляемых объектов в частотной и временной области
- 4.2. Статические и динамические характеристики сау
- 4.3. Переходные и импульсные характеристики сау `
- 4.4. Уравнение Лагранжа 2-го рода и дифференциальные уравнения
- 4.5. Линеаризация сау
- 5. Структурные методы исследования линейных сау
- 5.1. Преобразование Лапласа, передаточные функции и матрицы
- 5.2. Типовые динамические звенья и структурные схемы сау
- 5.3. Способы соединения звеньев. Правила преобразования структурных схем
- 6. Устойчивость линейных систем управления
- 6.1. Характеристическое уравнение линейной сау. Влияние корней характеристического полинома на устойчивость сау
- 6.2. Алгебраические критерии устойчивости
- 6.2.1. Критерий Гурвица Формулировка критерия: автоматическая система, описываемая характеристическим уравнением n-го порядка
- 6.2.2. Критерий Рауса
- 6.3. Частотные критерии устойчивости
- 6.3.1. Критерий Михайлова
- 6.3.2. Критерий Найквиста
- 7. Качество систем управления
- 7.1. Прямые показатели качества регулирования
- 7.2. Косвенные показатели качества регулирования
- 7.2.1. Оценка качества регулирования по расположению корней характеристического уравнения
- 8. Метод пространства состояний
- 8.1. Векторно-матричное описание сау
- 8.2. Схемы пространства состояний
- 8.3. Понятие матрицы перехода (переходных состояний)
- 8.4. Управляемость и наблюдаемость сау
- 9. Синтез линейных непрерывных сау
- 9.1. Общая постановка задачи синтеза
- 9.2. Типовые параметрически оптимизируемые регуляторы (корректирующие звенья) класса “вход-выход”
- 9.3. Синтез систем с подчиненным регулированием координат
- Методика структурно-параметрического синтеза контуров регулирования сау по желаемой передаточной функции
- 10. Дискретные и дискретно-непрерывные сау
- 10.1. Дискретизация и модуляция сигналов. Аналих линейных импульсных сау
- 10.2. Математическое описание дискретных систем
- 10.2.1. Z-преобразование и дискретные передаточные функции
- 10.2.2. Разностные уравнения
- 10.2.3. Описание дискретных сау в переменных состояния
- 10.2.4. Описание дискретно-непрерывных сау в пространстве состояний
- 10.3. Синтез цифровых систем управления
- 10.3.1. Метод дискретизации аналоговых регуляторов
- 10.3.2. Метод переменного коэффициента усиления
- Литература