2.4.2. Интегральное преобразование Фурье
Непериодический сигнал может быть в частотной области описан с помощью прямого интегрального преобразования Фурье, однако он для этого должен удовлетворять следующим требованиям:
должно выполняться условие Дирихле;
должен быть абсолютно интегрируемым, т.е.:
.
Прямое преобразование Фурье (Direct Fourier Transform)имеет вид:
(2.6),
где – спектральная функция или спектральная плотность сигнала (в (2.6) и далее означает комплексную функцию). Иногда в задачах обработки сигналов ее называют фурье-образом или фурье-спектром сигнала.
В этом выражении для его преобразования использована формула Эйлера для записи комплексного числа в тригинометрической форме:
От спектральной плотности можно перейти к амплитудному спектру
(2.7)
и фазовому спектру
(2.8).
Для вещественной функции спектральная плотность на частотахиявляется комплексно-сопряжённой, т.е., тогда для амплитудного и фазового спектров справедливы соотношения:
.
Если – чётная, то спектральная плотность являетсявещественной и чётной и, наоборот, для нечётной – чисто мнимая и нечётная.
Обратное преобразование Фурье (Inverse Fourier Transform) обеспечивает переход из частотной области во временную область заданного сигнала:
; (2.9)
Пример 1. Пусть сигнал является отдельным прямоугольным импульсом (рис.2.3.)
Рис 2.3. Прямоугольный импульс.
Такой сигнал может быть описан как (см. раздел 2.1):
В этом случае спектральная плотность сигнала определяется следующим образом (с учетом выражения (2.6))
.
Амплитудный и фазовый спетры такого сигнала представлены на рис. 2.4 и рис.2.5 соответственно.
Р ис. 2.4. Амплитудный спектр прямоугольного импульса.
Рис. 2.5. Фазовый спектр прямоугольного импульса
Пример 2. Исходный сигнал является сдвинутым прямоугольным импульсом (рис.2.6).
Рис. 2.6. Сдвинутый прямоугольный импульс.
Такой сигнал может быть описан как (см. раздел 2.1):
кой иРис.2.6.
,
Тогда получаем выражение для его спектральной плотности:
На рис. 2.7 представлен амплитудный спектр сдвинутого прямоугольного импульса такого сигнала, а на рис. 2.8 – его фазовый спектр.
Рис.2.7. Амплитудный спектр сдвинутого прямоугольного импульса
Рис. 2.8. Фазовый спектр сдвинутого прямоугольного импульса
Отметим, что амплитудные спектры на рис.2.4 и рис. 2.7 совпадают , несмотря на сдвиг прямоугольного импульса.
Пример 3. Пусть исходный сигнал имеет вид:
,
Отсюда не трудно получить, что его спектральная плотность имеет вид:
.
Преобразование Фурье является одним из важнейших ортогональных преобразований, используемых в цифровой обработке сигналов. Действительно, вполне физически ясен смысл перехода от временного описания исходного сигнала к его частотному описанию. Кроме того, двумерное преобразование Фурье описывает не что иное, как дифракцию электромагнитных и упругих волн в дальней зоне (дифракцию Фраунгофера) – т.е. на большом (по сравнению с размерами источника и длиной волны) расстоянии от источника [28].
- Цифровая обработка сигналов
- Санкт-Петербург
- Содержание
- 7.2. Вейвлеты 106
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- 2. Понятие сигналов. Виды сигналов
- 2.1. Виды сигналов
- 2.2. Энергия и мощность сигнала
- 2.3. Представление периодических сигналов в частотной области
- 2.4. Представление в частотной области непериодических сигналов
- Введение в теорию ортогональных преобразований
- 2.4.2. Интегральное преобразование Фурье
- 2.5. Свойства преобразования Фурье
- 2.5.1. Фурье-анализ неинтегрируемых сигналов
- 2.6. Интегральное преобразование Хартли
- 2.7. Случайные сигналы
- 2.7.1.Модели случайных процессов
- 2.7.2. Вероятностные характеристики случайного процесса Функциональные характеристики.
- Числовые характеристики
- Примеры случайных процессов с различными законами распределения
- 3. Корреляционный анализ сигналов
- 3.1. Корреляционная функция (кф):
- 3.2. Взаимная корреляционная функция
- 3.3. Взаимный спектр сигналов
- 3.4. Корреляционные функции случайных процессов
- 3.4.1. Стационарные и эргодические случайные процессы
- 3.5. Спектральные характеристики случайных процессов
- 3.5.1. Теорема Винера-Хинчина
- 3.6. Комплексная огибающая сигнала
- 4. Переход от аналоговых сигналов к цифровым
- 4.1. Дискретизация сигналов
- 4.1.1. Влияние формы дискретизирующих импульсов
- 4.1.2. Теорема Котельникова
- 4.1.3. Дискретизация при использовании квадратурных сигналов
- 4.1.4. Определение шага временной дискретизации при восстановлении сигнала полиномами 0-го порядка
- 4.1.5. Определение шага дискретизации при заданной автокорреляционной функции
- Изменение частоты дискретизации. При решение различных задач обработки сигналов достаточно часто требуется изменение частоты дискретизации сигнала.
- 4.2. Квантование непрерывных сигналов по уровню
- 5. Основные типы дискретных алгоритмов цифровой обработки сигналов
- 5.1. Линейные и нелинейные преобразования
- 5.2. Характеристики линейных систем
- 5.4. Апериодическая свертка и корреляция
- 5.5. Двумерная апериодическая свертка и корреляция
- 5.6 Нерекурсивные и рекурсивные фильтры
- 5.7. Метод синхронного или когерентного накопления
- 5.8. Адаптивные фильтры.
- 5.8.1. Фильтр Винера-Хопфа.
- 5.10. Фильтр Калмана.
- 6. Дискретные ортогональные преобразования
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 6.1. Дискретное преобразование Фурье
- 6.2. Дискретное преобразование Хартли
- 6.3. Двумерные дискретные преобразования Фурье и Хартли
- 6.4. Ортогональные преобразования в диадных базисах
- 6.5. Дискретное косинусное преобразование
- 6.6. Оконное преобразование Фурье
- 6.7. Выполнение фильтрации в частотной области
- Виды фильтров
- 7. Вейвлет преобразования или разложение по всплескам
- 7.1. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- 7.2. Вейвлеты
- 7.2.1. Непрерывные вейвлет преобразования
- 7.2.2. Частотный подход к вейвлет преобразованиям
- 7.2.3. Вейвлет-ряды дискретного времени
- 7.2.4. Дискретное вейвлет-преобразование
- 7.2.4.1. Условия полного восстановления сигнала
- 7.2.5. Пакеты вейвлетов (алгоритм одиночного дерева)
- 7.2.6. Целочисленное вейвлет-преобразование
- Целочисленное вычисление вейвлет–преобразование (2,2). Это преобразование эквивалентно вейвлет-преобразованию Хаара, использующему следующие фильтры декомпозиции:
- Целочисленное вычисление вейвлет-преобразования (2,6). Данное преобразование эквивалентно использованию следующих фильтров анализа:
- Целочисленное вычисление вейвлет –преобразования (5,3). Такое преобразование также является разновидностью биортогонального преобразования и использует следующую пару фильтров:
- 7.3. Применение вейвлет-преобразований для сжатия изображения
- 8. Быстрые алгоритмы ортогональных преобразований
- 8.1. Вычислительная сложность дпф и способы её сокращения
- 8.2. Запись алгоритма бпф в векторно-матричной форме
- 8.3. Представление алгоритма бпф в виде рекурсивных соотношений
- 8.4. Алгоритмы бпф с прореживанием по времени и по частоте
- 8.6. Вычислительная сложность алгоритмов бпф
- 8.7. Выполнение бпф для случаев
- 8.8. Быстрое преобразование Хартли
- 8.9. Быстрое преобразование Адамара
- 8.10. Выбор метода вычисления свертки / корреляции
- 9. Алгоритмы нелинейной обработки сигналов
- 9.1. Ранговая фильтрация
- 9.2. Взвешенная ранговая фильтрация
- 9.3. Скользящая эквализация гистограмм
- 9.4. Преобразование гистограмм распределения
- Контрольные вопросы и задания. Разделы 1-3.
- Раздел 4
- Разделы 5 и 6
- Раздел 5
- Раздел 8
- Раздел 9
- Кафедра вычислительной техники