6.3. Двумерные дискретные преобразования Фурье и Хартли
Для обработки двумерных сигналов, в частности, изображений, широко используются двумерные спектральные преобразования. Двумерное дискретное преобразование Фурье имеет вид [11, 21]:
(6.6)
Поскольку ядро преобразования Фурье является разделимым по переменным интегрирования, то для выполнения двумерного ДПФ на практике используется строчно-столбцовый метод.
Действительно,
откуда получаем с учетом (2.16):
Введя обозначение
(6.7)
получим:
. (6.8)
Согласно такому подходу, вначале выполняются одномерные ДПФ по строкам матрицы с отсчетами изображения, а затем выполняются одномерные ДПФ по столбцам матрицы промежуточных результатов, представляющих собой одномерные спектры по строкам изображения. В матричном виде это может быть записано следующим образом [12]:
(6.9).
Из (2.19) следует, что двумерное ДПФ сводится вначале к одномерному ДПФ матрицы X по столбцам, а затем к одномерному ДПФ по строкам матрицы промежуточных результатов .
Сложность вычислений на первом этапе составит N раз по N2 базовых операций, под которыми понимаются операции вычисления выражения под знаком суммы в (6.7) и (6.8), и столько же на втором, откуда: QДПФ = 2N3 (Б.О.)
В то же время непосредственные вычисления двумерного ДПФ по формуле (2.16) требуют вычислительных затрат:
Таким образом, строчно-столбцовый метод позволят существенно снизить вычислительную сложность алгоритма двумерного ДПФ с доопераций умножения. Вычисление одномерного ДПФ по каждой из координат преобразование выполняется на основе процедуры быстрого преобразования Фурье. Такой подход, однако, требует выполнения дополнительной процедуры транспонирования матрицы промежуточных результатов после выполнения обработки по одной из координат матрицы. При этом преобразование по следующей координате может выполняться только после того, как сформирована вся матрица промежуточных результатов и выполнено ее транспонирование.
Поэтому использование свойства разделимости ядра двумерного ДПФ по переменным суммирования приводит к снижению сложности вычислений в N/2 раз.
Однако далеко не все ядра двумерных спектральных ортогональных преобразований в явном виде обладают свойством разделимости. К таким преобразованиям относится, например, двумерное дискретное преобразование Хартли [3]:
Рассмотрим применение специального или модифицированного преобразования Хартли, в котором искусственно выполнено разделение ядра по координатам [3]:
(6.11)
Очевидно, что выражение (6.11) может быть представлено в виде:
Представляет интерес установить взаимосвязь между традиционным двумерным преобразованием Хартли (выражение (6.20)) и модифицированным преобразованием Хартли, определяемым согласно выражению (6.21). После ряда тригонометрических и алгебраических преобразований ядра в выражении (2.21) нетрудно получить [24]:
(6.12)
где в силу цикличности ядра (N-k)modN = -k; (N-l)modN = -l.
От компонент спектра Хартли можно перейти к компонентам спектра Фурье, используя известное соотношение:
Если записать в виде, подобном выражению (6.12), то получим выражение, определяющее связь между компонентами спектра Фурье и компонентами модифицированного преобразования Хартли:
(6.13)
Следует подчеркнуть, что определениекак через традиционное, так и через модифицированное преобразование Хартли требует вычисления только лишьилисоответственно. Остальные требуемые слагаемые легко могут быть найдены путем перекомпоновки матрицыили
Выражения (6.12) и (6.13) справедливы для любых действительных функций . В частных случаях, когдаxmn обладает симметрией относительно одной или двух координат, эти выражения существенно упрощаются.
Пусть Тогда, а формулы (6.12) и (6.13) приобретают вид:
Если , то как преобразование Хартли, так и преобразование Фурье эквивалентны модифицированному преобразованию Хартли:
;
- Цифровая обработка сигналов
- Санкт-Петербург
- Содержание
- 7.2. Вейвлеты 106
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- 2. Понятие сигналов. Виды сигналов
- 2.1. Виды сигналов
- 2.2. Энергия и мощность сигнала
- 2.3. Представление периодических сигналов в частотной области
- 2.4. Представление в частотной области непериодических сигналов
- Введение в теорию ортогональных преобразований
- 2.4.2. Интегральное преобразование Фурье
- 2.5. Свойства преобразования Фурье
- 2.5.1. Фурье-анализ неинтегрируемых сигналов
- 2.6. Интегральное преобразование Хартли
- 2.7. Случайные сигналы
- 2.7.1.Модели случайных процессов
- 2.7.2. Вероятностные характеристики случайного процесса Функциональные характеристики.
- Числовые характеристики
- Примеры случайных процессов с различными законами распределения
- 3. Корреляционный анализ сигналов
- 3.1. Корреляционная функция (кф):
- 3.2. Взаимная корреляционная функция
- 3.3. Взаимный спектр сигналов
- 3.4. Корреляционные функции случайных процессов
- 3.4.1. Стационарные и эргодические случайные процессы
- 3.5. Спектральные характеристики случайных процессов
- 3.5.1. Теорема Винера-Хинчина
- 3.6. Комплексная огибающая сигнала
- 4. Переход от аналоговых сигналов к цифровым
- 4.1. Дискретизация сигналов
- 4.1.1. Влияние формы дискретизирующих импульсов
- 4.1.2. Теорема Котельникова
- 4.1.3. Дискретизация при использовании квадратурных сигналов
- 4.1.4. Определение шага временной дискретизации при восстановлении сигнала полиномами 0-го порядка
- 4.1.5. Определение шага дискретизации при заданной автокорреляционной функции
- Изменение частоты дискретизации. При решение различных задач обработки сигналов достаточно часто требуется изменение частоты дискретизации сигнала.
- 4.2. Квантование непрерывных сигналов по уровню
- 5. Основные типы дискретных алгоритмов цифровой обработки сигналов
- 5.1. Линейные и нелинейные преобразования
- 5.2. Характеристики линейных систем
- 5.4. Апериодическая свертка и корреляция
- 5.5. Двумерная апериодическая свертка и корреляция
- 5.6 Нерекурсивные и рекурсивные фильтры
- 5.7. Метод синхронного или когерентного накопления
- 5.8. Адаптивные фильтры.
- 5.8.1. Фильтр Винера-Хопфа.
- 5.10. Фильтр Калмана.
- 6. Дискретные ортогональные преобразования
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 6.1. Дискретное преобразование Фурье
- 6.2. Дискретное преобразование Хартли
- 6.3. Двумерные дискретные преобразования Фурье и Хартли
- 6.4. Ортогональные преобразования в диадных базисах
- 6.5. Дискретное косинусное преобразование
- 6.6. Оконное преобразование Фурье
- 6.7. Выполнение фильтрации в частотной области
- Виды фильтров
- 7. Вейвлет преобразования или разложение по всплескам
- 7.1. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- 7.2. Вейвлеты
- 7.2.1. Непрерывные вейвлет преобразования
- 7.2.2. Частотный подход к вейвлет преобразованиям
- 7.2.3. Вейвлет-ряды дискретного времени
- 7.2.4. Дискретное вейвлет-преобразование
- 7.2.4.1. Условия полного восстановления сигнала
- 7.2.5. Пакеты вейвлетов (алгоритм одиночного дерева)
- 7.2.6. Целочисленное вейвлет-преобразование
- Целочисленное вычисление вейвлет–преобразование (2,2). Это преобразование эквивалентно вейвлет-преобразованию Хаара, использующему следующие фильтры декомпозиции:
- Целочисленное вычисление вейвлет-преобразования (2,6). Данное преобразование эквивалентно использованию следующих фильтров анализа:
- Целочисленное вычисление вейвлет –преобразования (5,3). Такое преобразование также является разновидностью биортогонального преобразования и использует следующую пару фильтров:
- 7.3. Применение вейвлет-преобразований для сжатия изображения
- 8. Быстрые алгоритмы ортогональных преобразований
- 8.1. Вычислительная сложность дпф и способы её сокращения
- 8.2. Запись алгоритма бпф в векторно-матричной форме
- 8.3. Представление алгоритма бпф в виде рекурсивных соотношений
- 8.4. Алгоритмы бпф с прореживанием по времени и по частоте
- 8.6. Вычислительная сложность алгоритмов бпф
- 8.7. Выполнение бпф для случаев
- 8.8. Быстрое преобразование Хартли
- 8.9. Быстрое преобразование Адамара
- 8.10. Выбор метода вычисления свертки / корреляции
- 9. Алгоритмы нелинейной обработки сигналов
- 9.1. Ранговая фильтрация
- 9.2. Взвешенная ранговая фильтрация
- 9.3. Скользящая эквализация гистограмм
- 9.4. Преобразование гистограмм распределения
- Контрольные вопросы и задания. Разделы 1-3.
- Раздел 4
- Разделы 5 и 6
- Раздел 5
- Раздел 8
- Раздел 9
- Кафедра вычислительной техники