8.9. Быстрое преобразование Адамара
Как отмечалось в разделе 6.4, матрица ядра Адамара
Поэтому алгоритм быстрого преобразования Адамара может быть легко получен на основе алгоритма БПФ2, если из него удалить операцию умножения на матрицу D поворачивающих элементов. На основании этого из выражения (3.10) можно получить:
(8.26)
где, как и в (8.10) l = 2m-1, k = (n)mod l, n - текущий индекс вектора ().
Иначе говоря, “бабочка” в таком алгоритме имеет вид как это показано на рис.8.9
Рис.8.9. Бабочка алгоритма быстрого преобразования Адамара, где
Такая же точно “бабочка”, как и представленная на рис.7.7, служит основой алгоритмов быстрого преобразования Пэли и Уолша, отличие которых состоит лишь в упорядочении исходных данных перед первой итерацией (см. раздел 6.2).
Граф быстрого алгоритма Уолша – Пэли для N = 16 приведен на рис.8.10.
Сложность же алгоритма быстрых ортогональных преобразований Уолша - Адамара в числе Б0 алгоритма QБПФ и QБПХ для , однако сложность самой базовой операции значительно меньше и составит только 2 операции сложения, что значительно меньше чем для алгоритма БПХ (не говоря уже о БПФ). Поэтому можно записать, что:
.
Рис.8.10. Граф алгоритма быстрого преобразования Адамара-Уолша для N=16
Быстрые алгоритмы БДОП Адамара-Уолша являются «обратимыми», т.е. вычисления по графу (см., например, рис.8.10) могут выполняться как «слева направо», так и «справа налево» [6].
Заметим, что для алгоритма БДОП с прореживанием по частоте не выполняется двоично-инверсная перестановка элементов вектора X перед первой итерацией, но зато необходимо переставлять элементы векторов результата по закону двоичной инверсии.
На рис. 8.11 представлен граф быстрого преобразования Хаара. Нетрудно видеть, что он является частично вырожденным по отношению к графу БДОП Адамара-Уолша.
Сам алгоритм быстрого преобразования Хаара (за исключением итоговой нормировки) будет описываться выражением (7.26), за тем лишь исключением, что при обработке каждого блока данных выполняется только первая базовая операция (k=0) Для БП Хаара сложность отдельной базовой операции такая же, как и у БПУ. Однако общее число базовых операций меньше, чем в алгоритмах БПХ и БПУ, и составляет всего Q = (2N-1) БО.
Рис.8.11. Граф быстрого преобразования Хаара для N =16.
- Цифровая обработка сигналов
- Санкт-Петербург
- Содержание
- 7.2. Вейвлеты 106
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- 2. Понятие сигналов. Виды сигналов
- 2.1. Виды сигналов
- 2.2. Энергия и мощность сигнала
- 2.3. Представление периодических сигналов в частотной области
- 2.4. Представление в частотной области непериодических сигналов
- Введение в теорию ортогональных преобразований
- 2.4.2. Интегральное преобразование Фурье
- 2.5. Свойства преобразования Фурье
- 2.5.1. Фурье-анализ неинтегрируемых сигналов
- 2.6. Интегральное преобразование Хартли
- 2.7. Случайные сигналы
- 2.7.1.Модели случайных процессов
- 2.7.2. Вероятностные характеристики случайного процесса Функциональные характеристики.
- Числовые характеристики
- Примеры случайных процессов с различными законами распределения
- 3. Корреляционный анализ сигналов
- 3.1. Корреляционная функция (кф):
- 3.2. Взаимная корреляционная функция
- 3.3. Взаимный спектр сигналов
- 3.4. Корреляционные функции случайных процессов
- 3.4.1. Стационарные и эргодические случайные процессы
- 3.5. Спектральные характеристики случайных процессов
- 3.5.1. Теорема Винера-Хинчина
- 3.6. Комплексная огибающая сигнала
- 4. Переход от аналоговых сигналов к цифровым
- 4.1. Дискретизация сигналов
- 4.1.1. Влияние формы дискретизирующих импульсов
- 4.1.2. Теорема Котельникова
- 4.1.3. Дискретизация при использовании квадратурных сигналов
- 4.1.4. Определение шага временной дискретизации при восстановлении сигнала полиномами 0-го порядка
- 4.1.5. Определение шага дискретизации при заданной автокорреляционной функции
- Изменение частоты дискретизации. При решение различных задач обработки сигналов достаточно часто требуется изменение частоты дискретизации сигнала.
- 4.2. Квантование непрерывных сигналов по уровню
- 5. Основные типы дискретных алгоритмов цифровой обработки сигналов
- 5.1. Линейные и нелинейные преобразования
- 5.2. Характеристики линейных систем
- 5.4. Апериодическая свертка и корреляция
- 5.5. Двумерная апериодическая свертка и корреляция
- 5.6 Нерекурсивные и рекурсивные фильтры
- 5.7. Метод синхронного или когерентного накопления
- 5.8. Адаптивные фильтры.
- 5.8.1. Фильтр Винера-Хопфа.
- 5.10. Фильтр Калмана.
- 6. Дискретные ортогональные преобразования
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 6.1. Дискретное преобразование Фурье
- 6.2. Дискретное преобразование Хартли
- 6.3. Двумерные дискретные преобразования Фурье и Хартли
- 6.4. Ортогональные преобразования в диадных базисах
- 6.5. Дискретное косинусное преобразование
- 6.6. Оконное преобразование Фурье
- 6.7. Выполнение фильтрации в частотной области
- Виды фильтров
- 7. Вейвлет преобразования или разложение по всплескам
- 7.1. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- 7.2. Вейвлеты
- 7.2.1. Непрерывные вейвлет преобразования
- 7.2.2. Частотный подход к вейвлет преобразованиям
- 7.2.3. Вейвлет-ряды дискретного времени
- 7.2.4. Дискретное вейвлет-преобразование
- 7.2.4.1. Условия полного восстановления сигнала
- 7.2.5. Пакеты вейвлетов (алгоритм одиночного дерева)
- 7.2.6. Целочисленное вейвлет-преобразование
- Целочисленное вычисление вейвлет–преобразование (2,2). Это преобразование эквивалентно вейвлет-преобразованию Хаара, использующему следующие фильтры декомпозиции:
- Целочисленное вычисление вейвлет-преобразования (2,6). Данное преобразование эквивалентно использованию следующих фильтров анализа:
- Целочисленное вычисление вейвлет –преобразования (5,3). Такое преобразование также является разновидностью биортогонального преобразования и использует следующую пару фильтров:
- 7.3. Применение вейвлет-преобразований для сжатия изображения
- 8. Быстрые алгоритмы ортогональных преобразований
- 8.1. Вычислительная сложность дпф и способы её сокращения
- 8.2. Запись алгоритма бпф в векторно-матричной форме
- 8.3. Представление алгоритма бпф в виде рекурсивных соотношений
- 8.4. Алгоритмы бпф с прореживанием по времени и по частоте
- 8.6. Вычислительная сложность алгоритмов бпф
- 8.7. Выполнение бпф для случаев
- 8.8. Быстрое преобразование Хартли
- 8.9. Быстрое преобразование Адамара
- 8.10. Выбор метода вычисления свертки / корреляции
- 9. Алгоритмы нелинейной обработки сигналов
- 9.1. Ранговая фильтрация
- 9.2. Взвешенная ранговая фильтрация
- 9.3. Скользящая эквализация гистограмм
- 9.4. Преобразование гистограмм распределения
- Контрольные вопросы и задания. Разделы 1-3.
- Раздел 4
- Разделы 5 и 6
- Раздел 5
- Раздел 8
- Раздел 9
- Кафедра вычислительной техники