8.4. Алгоритмы бпф с прореживанием по времени и по частоте
Быстрые алгоритмы БПФ являются “обратимыми”, т.е. вычисления по графу БПФ (см., например, рис. 3.1) могут выполняться как “слева направо”, так и “справа налево”.
В первом случае алгоритм БПФ основан на “бабочке” вида:
(8.11)
и называется алгоритмом с прореживанием по времени (алгоритм Кули- Тьюки) [21,25].
Во втором случае (при вычислении по графу “справа налево”) алгоритм БПФ производится на основе бабочки вида:
(8.12)
и называется алгоритмом БПФ с прореживанием по частоте (алгоритмом Сэнди-Тьюки). Такие алгоритмы были впервые опубликованы в середине 60-х годов [21,25].
Графы подобных базовых операций приведены на рис. 8.2, а) и б) соответственно.
а)
б)
Рис. 8.2. Графы базовых операций БПФ с прореживанием по времени (а) и по частоте (б)
Заметим, что для алгоритма БПФ с прореживанием по частоте не выполняется двоично-инверсная перестановка элементов вектора X перед первой итерацией, но зато необходимо переставлять элементы векторов результата по закону двоичной инверсии.
8.5. Алгоритм БПФ по основанию r (N = rm, r3)
До сих пор мы рассматривали БПФ только для случая, когда N = 2m . На практике, однако, достаточно часто возникает необходимость вычисления ДПФ при , где r отлично от 2 (например,N=125=53, N= 625=54; N=27 и т.д.).
Для таких случаев несколько позднее Сэнди и Радемахором были разработаны алгоритмы БПФ, основу которых составляют базовые операции “бабочка” следующего вида для алгоритмов с прореживанием по времени:
(8.13)
и для алгоритмов с прореживанием по частоте соответственно:
(8.14)
а)
Рис. 8.3. Графы базовых опeраций БПФ по основанию r
Остановимся на правилах перестановки элементов в таком случае. На входе выполняется перестановка по закону r - ичной инверсии, т.е. на входе элементы вектора X объединяются в подвектора из r - элементов, причём шаг выборок составит:
С помощью системы рекуррентных соотношений, подобных выражению (8.9), алгоритм БПФ для N=rM с прореживанием по времени можно описать
следующим образом [6,15]:
(8.15)
где - матрица ДЭФ порядкаr (т.е. ДПФ для вектора N сводится к ряду ДПФ размера r над блоками), k=(n)mod l, n текущий индекс элемента вектора (),,
, ,,
Граф БПФ для N=9 имеет вид, представленный на рис.8.4
Рис.8.4. Граф БПФ
- Цифровая обработка сигналов
- Санкт-Петербург
- Содержание
- 7.2. Вейвлеты 106
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- 2. Понятие сигналов. Виды сигналов
- 2.1. Виды сигналов
- 2.2. Энергия и мощность сигнала
- 2.3. Представление периодических сигналов в частотной области
- 2.4. Представление в частотной области непериодических сигналов
- Введение в теорию ортогональных преобразований
- 2.4.2. Интегральное преобразование Фурье
- 2.5. Свойства преобразования Фурье
- 2.5.1. Фурье-анализ неинтегрируемых сигналов
- 2.6. Интегральное преобразование Хартли
- 2.7. Случайные сигналы
- 2.7.1.Модели случайных процессов
- 2.7.2. Вероятностные характеристики случайного процесса Функциональные характеристики.
- Числовые характеристики
- Примеры случайных процессов с различными законами распределения
- 3. Корреляционный анализ сигналов
- 3.1. Корреляционная функция (кф):
- 3.2. Взаимная корреляционная функция
- 3.3. Взаимный спектр сигналов
- 3.4. Корреляционные функции случайных процессов
- 3.4.1. Стационарные и эргодические случайные процессы
- 3.5. Спектральные характеристики случайных процессов
- 3.5.1. Теорема Винера-Хинчина
- 3.6. Комплексная огибающая сигнала
- 4. Переход от аналоговых сигналов к цифровым
- 4.1. Дискретизация сигналов
- 4.1.1. Влияние формы дискретизирующих импульсов
- 4.1.2. Теорема Котельникова
- 4.1.3. Дискретизация при использовании квадратурных сигналов
- 4.1.4. Определение шага временной дискретизации при восстановлении сигнала полиномами 0-го порядка
- 4.1.5. Определение шага дискретизации при заданной автокорреляционной функции
- Изменение частоты дискретизации. При решение различных задач обработки сигналов достаточно часто требуется изменение частоты дискретизации сигнала.
- 4.2. Квантование непрерывных сигналов по уровню
- 5. Основные типы дискретных алгоритмов цифровой обработки сигналов
- 5.1. Линейные и нелинейные преобразования
- 5.2. Характеристики линейных систем
- 5.4. Апериодическая свертка и корреляция
- 5.5. Двумерная апериодическая свертка и корреляция
- 5.6 Нерекурсивные и рекурсивные фильтры
- 5.7. Метод синхронного или когерентного накопления
- 5.8. Адаптивные фильтры.
- 5.8.1. Фильтр Винера-Хопфа.
- 5.10. Фильтр Калмана.
- 6. Дискретные ортогональные преобразования
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 6.1. Дискретное преобразование Фурье
- 6.2. Дискретное преобразование Хартли
- 6.3. Двумерные дискретные преобразования Фурье и Хартли
- 6.4. Ортогональные преобразования в диадных базисах
- 6.5. Дискретное косинусное преобразование
- 6.6. Оконное преобразование Фурье
- 6.7. Выполнение фильтрации в частотной области
- Виды фильтров
- 7. Вейвлет преобразования или разложение по всплескам
- 7.1. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- 7.2. Вейвлеты
- 7.2.1. Непрерывные вейвлет преобразования
- 7.2.2. Частотный подход к вейвлет преобразованиям
- 7.2.3. Вейвлет-ряды дискретного времени
- 7.2.4. Дискретное вейвлет-преобразование
- 7.2.4.1. Условия полного восстановления сигнала
- 7.2.5. Пакеты вейвлетов (алгоритм одиночного дерева)
- 7.2.6. Целочисленное вейвлет-преобразование
- Целочисленное вычисление вейвлет–преобразование (2,2). Это преобразование эквивалентно вейвлет-преобразованию Хаара, использующему следующие фильтры декомпозиции:
- Целочисленное вычисление вейвлет-преобразования (2,6). Данное преобразование эквивалентно использованию следующих фильтров анализа:
- Целочисленное вычисление вейвлет –преобразования (5,3). Такое преобразование также является разновидностью биортогонального преобразования и использует следующую пару фильтров:
- 7.3. Применение вейвлет-преобразований для сжатия изображения
- 8. Быстрые алгоритмы ортогональных преобразований
- 8.1. Вычислительная сложность дпф и способы её сокращения
- 8.2. Запись алгоритма бпф в векторно-матричной форме
- 8.3. Представление алгоритма бпф в виде рекурсивных соотношений
- 8.4. Алгоритмы бпф с прореживанием по времени и по частоте
- 8.6. Вычислительная сложность алгоритмов бпф
- 8.7. Выполнение бпф для случаев
- 8.8. Быстрое преобразование Хартли
- 8.9. Быстрое преобразование Адамара
- 8.10. Выбор метода вычисления свертки / корреляции
- 9. Алгоритмы нелинейной обработки сигналов
- 9.1. Ранговая фильтрация
- 9.2. Взвешенная ранговая фильтрация
- 9.3. Скользящая эквализация гистограмм
- 9.4. Преобразование гистограмм распределения
- Контрольные вопросы и задания. Разделы 1-3.
- Раздел 4
- Разделы 5 и 6
- Раздел 5
- Раздел 8
- Раздел 9
- Кафедра вычислительной техники