8.6. Вычислительная сложность алгоритмов бпф
Рассмотрим вначале алгоритмы БПФ для с прореживанием по времени.
Такой алгоритм является итерационным и включает итераций,
причем на каждой стадии выполняется N/2 базовых операций вида (7.11), откуда нетрудно получить, что общая трудоемкость алгоритма БПФ [21]:
где qБО - сложность базовой операции.
В свою очередь, базовая операция требует для своего выполнения 1 операцию умножения и 2 операции сложения комплексных чисел или, в пересчете на операции с действительными числами, 4 операции умножения и 4 операции сложения действительных чисел.
Для ЭВМ предыдущих поколений, где операции умножения выполнялись главным образом программным (а не аппаратным) способом, особую важность имело прежде всего сокращение числа операций умножения как наиболее длительных.
В современных ЭВМ эта задача не столь актуальна, так как длительность практически всех операций близка, особенно в специализированных процессорах.
Поэтому будем полагать, что сложность базовой операции при работе с комплексными числами равна
где qD=qx+q+
Здесь и далее под q подразумевает сложность отдельной машинной команды, например, в числе тактов работы процессора, необходимой для выполнения конкретной арифметической операции. Следовательно, для БПФ сложность алгоритма можно определить как:
При обработке вектора данных длинойна каждой из M итераций выполняется по N/r базовых операций, т.е.
Однако сложность базовой операции, как это можно видеть из (8.15), составит:
qБОr2qk
где qk=qУМН+qСЛ - для комплексных чисел, или, как и в случае , посчитаем, чтоqk=4qD и получим, подставив в (8.15) значения :
Втаблице 8.1 приведены значения для времени выполнения ДПФ и БПФ по различным основаниям при условии, чтоtсл=tумн=100нсек.
Таблица 8.1.
Размер вектора N | Время выполнения, сек. | ||
БПФ | ДПФ | ||
16 | 24 | 2,5610-5 | 2,010-4 |
25 | 52 | 210-4 | 510-4 |
27 | 33 | 6,510-5 | 6,510-5 |
32 | 25 | 6,410-5 | 810-4 |
81 | 34 | 7,810-4 | 5,310-3 |
125 | 53 | 1,510-3 | 1,210-3 |
128 | 27 | 3,610-4 | 1,310-2 |
512 | 29 | 1,810-3 | 210-1 |
625 | 54 | 10-2 | 310-1 |
1024 | 216 | 4,110-3 | 8,310-1 |
16384 | 214 | 1 сек. | 36 мин. |
Поэтому с точки зрения сокращения вычислительных затрат выгодны алгоритмы БПФ по основанию 2 (или 4), причем с ростом основания r выигрыш уменьшается.
- Цифровая обработка сигналов
- Санкт-Петербург
- Содержание
- 7.2. Вейвлеты 106
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- 2. Понятие сигналов. Виды сигналов
- 2.1. Виды сигналов
- 2.2. Энергия и мощность сигнала
- 2.3. Представление периодических сигналов в частотной области
- 2.4. Представление в частотной области непериодических сигналов
- Введение в теорию ортогональных преобразований
- 2.4.2. Интегральное преобразование Фурье
- 2.5. Свойства преобразования Фурье
- 2.5.1. Фурье-анализ неинтегрируемых сигналов
- 2.6. Интегральное преобразование Хартли
- 2.7. Случайные сигналы
- 2.7.1.Модели случайных процессов
- 2.7.2. Вероятностные характеристики случайного процесса Функциональные характеристики.
- Числовые характеристики
- Примеры случайных процессов с различными законами распределения
- 3. Корреляционный анализ сигналов
- 3.1. Корреляционная функция (кф):
- 3.2. Взаимная корреляционная функция
- 3.3. Взаимный спектр сигналов
- 3.4. Корреляционные функции случайных процессов
- 3.4.1. Стационарные и эргодические случайные процессы
- 3.5. Спектральные характеристики случайных процессов
- 3.5.1. Теорема Винера-Хинчина
- 3.6. Комплексная огибающая сигнала
- 4. Переход от аналоговых сигналов к цифровым
- 4.1. Дискретизация сигналов
- 4.1.1. Влияние формы дискретизирующих импульсов
- 4.1.2. Теорема Котельникова
- 4.1.3. Дискретизация при использовании квадратурных сигналов
- 4.1.4. Определение шага временной дискретизации при восстановлении сигнала полиномами 0-го порядка
- 4.1.5. Определение шага дискретизации при заданной автокорреляционной функции
- Изменение частоты дискретизации. При решение различных задач обработки сигналов достаточно часто требуется изменение частоты дискретизации сигнала.
- 4.2. Квантование непрерывных сигналов по уровню
- 5. Основные типы дискретных алгоритмов цифровой обработки сигналов
- 5.1. Линейные и нелинейные преобразования
- 5.2. Характеристики линейных систем
- 5.4. Апериодическая свертка и корреляция
- 5.5. Двумерная апериодическая свертка и корреляция
- 5.6 Нерекурсивные и рекурсивные фильтры
- 5.7. Метод синхронного или когерентного накопления
- 5.8. Адаптивные фильтры.
- 5.8.1. Фильтр Винера-Хопфа.
- 5.10. Фильтр Калмана.
- 6. Дискретные ортогональные преобразования
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 6.1. Дискретное преобразование Фурье
- 6.2. Дискретное преобразование Хартли
- 6.3. Двумерные дискретные преобразования Фурье и Хартли
- 6.4. Ортогональные преобразования в диадных базисах
- 6.5. Дискретное косинусное преобразование
- 6.6. Оконное преобразование Фурье
- 6.7. Выполнение фильтрации в частотной области
- Виды фильтров
- 7. Вейвлет преобразования или разложение по всплескам
- 7.1. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- 7.2. Вейвлеты
- 7.2.1. Непрерывные вейвлет преобразования
- 7.2.2. Частотный подход к вейвлет преобразованиям
- 7.2.3. Вейвлет-ряды дискретного времени
- 7.2.4. Дискретное вейвлет-преобразование
- 7.2.4.1. Условия полного восстановления сигнала
- 7.2.5. Пакеты вейвлетов (алгоритм одиночного дерева)
- 7.2.6. Целочисленное вейвлет-преобразование
- Целочисленное вычисление вейвлет–преобразование (2,2). Это преобразование эквивалентно вейвлет-преобразованию Хаара, использующему следующие фильтры декомпозиции:
- Целочисленное вычисление вейвлет-преобразования (2,6). Данное преобразование эквивалентно использованию следующих фильтров анализа:
- Целочисленное вычисление вейвлет –преобразования (5,3). Такое преобразование также является разновидностью биортогонального преобразования и использует следующую пару фильтров:
- 7.3. Применение вейвлет-преобразований для сжатия изображения
- 8. Быстрые алгоритмы ортогональных преобразований
- 8.1. Вычислительная сложность дпф и способы её сокращения
- 8.2. Запись алгоритма бпф в векторно-матричной форме
- 8.3. Представление алгоритма бпф в виде рекурсивных соотношений
- 8.4. Алгоритмы бпф с прореживанием по времени и по частоте
- 8.6. Вычислительная сложность алгоритмов бпф
- 8.7. Выполнение бпф для случаев
- 8.8. Быстрое преобразование Хартли
- 8.9. Быстрое преобразование Адамара
- 8.10. Выбор метода вычисления свертки / корреляции
- 9. Алгоритмы нелинейной обработки сигналов
- 9.1. Ранговая фильтрация
- 9.2. Взвешенная ранговая фильтрация
- 9.3. Скользящая эквализация гистограмм
- 9.4. Преобразование гистограмм распределения
- Контрольные вопросы и задания. Разделы 1-3.
- Раздел 4
- Разделы 5 и 6
- Раздел 5
- Раздел 8
- Раздел 9
- Кафедра вычислительной техники