8.1. Вычислительная сложность дпф и способы её сокращения
Во второй главе мы пришли к выводу, что любое ортогональное преобразование в матричной форме может быть описано как процедура умножения вектора исходных данных на матрицу ядра (при прямом преобразовании)
или вектора результатов разложения исходного сигнала по тем или иным базисным ортогональным функциям на обратную матрицу (при обратном преобразовании):
В общем случае вычислительная сложность такой процедуры составляет
Q = N2(БО),
где отдельная базовая операция включает операцию умножения и сложения действительных чисел или те же операции умножения и сложения, но для комплексных чисел, в случае преобразования Фурье. С учётом того, что для комплексных чисел
сложность вычислительной процедуры ДПФ
, (8.1)
если под Б.О. понимать те же операции, как и в базисах действительных функций.
В целях сокращения объёма вычислений можно выполнить формирование отсчётов вектора с учётом вырождения (т.е. тривиальности) первой строки и первого столбца матрицы ДПФ:
(8.2)
Отметим особенности представления чётных и нечётных функций при ДПФ и ДПХ. Пусть исходный сигнал описан как суперпозиция чётной и нечётной составляющей:
причем для каждой из составляющих можно записать
(8.3)
С учётом такого представления сигнала можно записать, что
(8.4а)
(8.4б)
поэтому для чётного исходного сигнала “синусная” компонента спектра будет равна 0, а для нечётного сигнала - “косинусная” компонента спектра равна 0.
Поэтому спектр действительного сигнала в базисах Фурье и Хартли описывается чётной функцией и для его задания требуется только косинусная компонента, причём в силу чётности для задания спектра достаточно только отсчётов.
Кроме того, матрицы иобладают свойством симметрии и периодичности (цикличности) следования элементов. Из симметрии матриц указанных ядер следует, что в общем случае для действительных последовательностей (т.е. вектора, содержащего только действительные элементы) может быть выполнено только длякомпонент спектра, ( например, с номерами), поскольку компоненты “положительной” и “отрицательной” областей частот (компоненты с номерамииимеют одинаковую амплитуду, но противоположные фазы. Поэтому вторую половину компонент можно легко достроить из вычисленных.
Аналогично можно поступить и при вычислении ДПХ - cos-составляющая “положительных” и “отрицательных” спектральных компонент одинакова, а sin-составляющие для “положительных” и “отрицательных” имеют противоположные знаки.
- Цифровая обработка сигналов
- Санкт-Петербург
- Содержание
- 7.2. Вейвлеты 106
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- 2. Понятие сигналов. Виды сигналов
- 2.1. Виды сигналов
- 2.2. Энергия и мощность сигнала
- 2.3. Представление периодических сигналов в частотной области
- 2.4. Представление в частотной области непериодических сигналов
- Введение в теорию ортогональных преобразований
- 2.4.2. Интегральное преобразование Фурье
- 2.5. Свойства преобразования Фурье
- 2.5.1. Фурье-анализ неинтегрируемых сигналов
- 2.6. Интегральное преобразование Хартли
- 2.7. Случайные сигналы
- 2.7.1.Модели случайных процессов
- 2.7.2. Вероятностные характеристики случайного процесса Функциональные характеристики.
- Числовые характеристики
- Примеры случайных процессов с различными законами распределения
- 3. Корреляционный анализ сигналов
- 3.1. Корреляционная функция (кф):
- 3.2. Взаимная корреляционная функция
- 3.3. Взаимный спектр сигналов
- 3.4. Корреляционные функции случайных процессов
- 3.4.1. Стационарные и эргодические случайные процессы
- 3.5. Спектральные характеристики случайных процессов
- 3.5.1. Теорема Винера-Хинчина
- 3.6. Комплексная огибающая сигнала
- 4. Переход от аналоговых сигналов к цифровым
- 4.1. Дискретизация сигналов
- 4.1.1. Влияние формы дискретизирующих импульсов
- 4.1.2. Теорема Котельникова
- 4.1.3. Дискретизация при использовании квадратурных сигналов
- 4.1.4. Определение шага временной дискретизации при восстановлении сигнала полиномами 0-го порядка
- 4.1.5. Определение шага дискретизации при заданной автокорреляционной функции
- Изменение частоты дискретизации. При решение различных задач обработки сигналов достаточно часто требуется изменение частоты дискретизации сигнала.
- 4.2. Квантование непрерывных сигналов по уровню
- 5. Основные типы дискретных алгоритмов цифровой обработки сигналов
- 5.1. Линейные и нелинейные преобразования
- 5.2. Характеристики линейных систем
- 5.4. Апериодическая свертка и корреляция
- 5.5. Двумерная апериодическая свертка и корреляция
- 5.6 Нерекурсивные и рекурсивные фильтры
- 5.7. Метод синхронного или когерентного накопления
- 5.8. Адаптивные фильтры.
- 5.8.1. Фильтр Винера-Хопфа.
- 5.10. Фильтр Калмана.
- 6. Дискретные ортогональные преобразования
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 6.1. Дискретное преобразование Фурье
- 6.2. Дискретное преобразование Хартли
- 6.3. Двумерные дискретные преобразования Фурье и Хартли
- 6.4. Ортогональные преобразования в диадных базисах
- 6.5. Дискретное косинусное преобразование
- 6.6. Оконное преобразование Фурье
- 6.7. Выполнение фильтрации в частотной области
- Виды фильтров
- 7. Вейвлет преобразования или разложение по всплескам
- 7.1. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- 7.2. Вейвлеты
- 7.2.1. Непрерывные вейвлет преобразования
- 7.2.2. Частотный подход к вейвлет преобразованиям
- 7.2.3. Вейвлет-ряды дискретного времени
- 7.2.4. Дискретное вейвлет-преобразование
- 7.2.4.1. Условия полного восстановления сигнала
- 7.2.5. Пакеты вейвлетов (алгоритм одиночного дерева)
- 7.2.6. Целочисленное вейвлет-преобразование
- Целочисленное вычисление вейвлет–преобразование (2,2). Это преобразование эквивалентно вейвлет-преобразованию Хаара, использующему следующие фильтры декомпозиции:
- Целочисленное вычисление вейвлет-преобразования (2,6). Данное преобразование эквивалентно использованию следующих фильтров анализа:
- Целочисленное вычисление вейвлет –преобразования (5,3). Такое преобразование также является разновидностью биортогонального преобразования и использует следующую пару фильтров:
- 7.3. Применение вейвлет-преобразований для сжатия изображения
- 8. Быстрые алгоритмы ортогональных преобразований
- 8.1. Вычислительная сложность дпф и способы её сокращения
- 8.2. Запись алгоритма бпф в векторно-матричной форме
- 8.3. Представление алгоритма бпф в виде рекурсивных соотношений
- 8.4. Алгоритмы бпф с прореживанием по времени и по частоте
- 8.6. Вычислительная сложность алгоритмов бпф
- 8.7. Выполнение бпф для случаев
- 8.8. Быстрое преобразование Хартли
- 8.9. Быстрое преобразование Адамара
- 8.10. Выбор метода вычисления свертки / корреляции
- 9. Алгоритмы нелинейной обработки сигналов
- 9.1. Ранговая фильтрация
- 9.2. Взвешенная ранговая фильтрация
- 9.3. Скользящая эквализация гистограмм
- 9.4. Преобразование гистограмм распределения
- Контрольные вопросы и задания. Разделы 1-3.
- Раздел 4
- Разделы 5 и 6
- Раздел 5
- Раздел 8
- Раздел 9
- Кафедра вычислительной техники