9.3. Скользящая эквализация гистограмм
Скользящая эквализация гистограмм является процедурой, обратной по своему алгоритму процедуре ранговой фильтрации. Элемент преобразованного изображения при скользящей эквализации определяется рангом центрального элемента окна исходного изображения.
Выполнение процедуры скользящей эквализации при использовании гистограммного алгоритма сводится к вычислению следующей суммы [16]:
Здесь H(q) - q-ый отсчет гистограммы, R - ранг центрального элемента окнаBц.
Алгоритм ранговой фильтрации при незначительном видоизменении базовой операции может быть сведен к алгоритму скользящей эквализации гистограмм. При выполнении такой процедуры элемент преобразованного изображения определяется рангом центрального элемента окна исходного изображения .
Однако важное отличие процедуры скользящей эквализации от ранговой и взвешенной ранговой фильтрации заключается в увеличении размеров окна сканирования. При обработке двумерных сигналов (изображений) размер окна сканирования выбирается из условия
M2 >= 2Q,
где Q – разрядность отсчетов сигнала (желательно при этом выбирать ближайшее значение М, при котором соблюдается указанное условие) .
Разрядно-срезовый алгоритм обратной ранговой фильтрации с послойным маскированием приобретает вид (для некоторого произвольного положения окна) [16]:
Начало :
D0 :=-M2;
bЦ:=d1d2d3...dЦ;
;
для цикл: (А.5.3)
;
если , то
иначе ;
конец цикла по ;
RЦ:=abs(DQ);
конец.
Здесь Bц - центральный элемент окна изображения. Заметим, что алгоритмы обратной ранговой фильтрации могут быть получены на базе алгоритмов как обычной, так и взвешенной ранговой фильтрации.
Ниже приведены примеры выполнения скользящей эквализации гистограмм.
Пример1. Выполнение эквализации на основе гистограммного алгоритма (рис. 5.2).
IR=13
R13 =22
yij=R13=22
Рис. 9.2. Скользящая эквализация гистограмм по гистограммному алгоритму
Пример 2. Эквализация на основе разрядно-срезового алгоритма с послойным маскированием.
0) D0=-25
bц=1101
S0=111...111
1) D1=-25+10=-15
b1=1; D1=-25
S1=S0&B1
2) D2=-25+6=-19
b2=1; D2=-25
S2=S1&B2
3) D3=-25+3=-22
b3=0; D3=-22
S3=S2&B3
4) D4=-22+2=-20
b4=1; D4=D3
S4=S2&B3 R=|D4|=22
- Цифровая обработка сигналов
- Санкт-Петербург
- Содержание
- 7.2. Вейвлеты 106
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- 2. Понятие сигналов. Виды сигналов
- 2.1. Виды сигналов
- 2.2. Энергия и мощность сигнала
- 2.3. Представление периодических сигналов в частотной области
- 2.4. Представление в частотной области непериодических сигналов
- Введение в теорию ортогональных преобразований
- 2.4.2. Интегральное преобразование Фурье
- 2.5. Свойства преобразования Фурье
- 2.5.1. Фурье-анализ неинтегрируемых сигналов
- 2.6. Интегральное преобразование Хартли
- 2.7. Случайные сигналы
- 2.7.1.Модели случайных процессов
- 2.7.2. Вероятностные характеристики случайного процесса Функциональные характеристики.
- Числовые характеристики
- Примеры случайных процессов с различными законами распределения
- 3. Корреляционный анализ сигналов
- 3.1. Корреляционная функция (кф):
- 3.2. Взаимная корреляционная функция
- 3.3. Взаимный спектр сигналов
- 3.4. Корреляционные функции случайных процессов
- 3.4.1. Стационарные и эргодические случайные процессы
- 3.5. Спектральные характеристики случайных процессов
- 3.5.1. Теорема Винера-Хинчина
- 3.6. Комплексная огибающая сигнала
- 4. Переход от аналоговых сигналов к цифровым
- 4.1. Дискретизация сигналов
- 4.1.1. Влияние формы дискретизирующих импульсов
- 4.1.2. Теорема Котельникова
- 4.1.3. Дискретизация при использовании квадратурных сигналов
- 4.1.4. Определение шага временной дискретизации при восстановлении сигнала полиномами 0-го порядка
- 4.1.5. Определение шага дискретизации при заданной автокорреляционной функции
- Изменение частоты дискретизации. При решение различных задач обработки сигналов достаточно часто требуется изменение частоты дискретизации сигнала.
- 4.2. Квантование непрерывных сигналов по уровню
- 5. Основные типы дискретных алгоритмов цифровой обработки сигналов
- 5.1. Линейные и нелинейные преобразования
- 5.2. Характеристики линейных систем
- 5.4. Апериодическая свертка и корреляция
- 5.5. Двумерная апериодическая свертка и корреляция
- 5.6 Нерекурсивные и рекурсивные фильтры
- 5.7. Метод синхронного или когерентного накопления
- 5.8. Адаптивные фильтры.
- 5.8.1. Фильтр Винера-Хопфа.
- 5.10. Фильтр Калмана.
- 6. Дискретные ортогональные преобразования
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 6.1. Дискретное преобразование Фурье
- 6.2. Дискретное преобразование Хартли
- 6.3. Двумерные дискретные преобразования Фурье и Хартли
- 6.4. Ортогональные преобразования в диадных базисах
- 6.5. Дискретное косинусное преобразование
- 6.6. Оконное преобразование Фурье
- 6.7. Выполнение фильтрации в частотной области
- Виды фильтров
- 7. Вейвлет преобразования или разложение по всплескам
- 7.1. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- 7.2. Вейвлеты
- 7.2.1. Непрерывные вейвлет преобразования
- 7.2.2. Частотный подход к вейвлет преобразованиям
- 7.2.3. Вейвлет-ряды дискретного времени
- 7.2.4. Дискретное вейвлет-преобразование
- 7.2.4.1. Условия полного восстановления сигнала
- 7.2.5. Пакеты вейвлетов (алгоритм одиночного дерева)
- 7.2.6. Целочисленное вейвлет-преобразование
- Целочисленное вычисление вейвлет–преобразование (2,2). Это преобразование эквивалентно вейвлет-преобразованию Хаара, использующему следующие фильтры декомпозиции:
- Целочисленное вычисление вейвлет-преобразования (2,6). Данное преобразование эквивалентно использованию следующих фильтров анализа:
- Целочисленное вычисление вейвлет –преобразования (5,3). Такое преобразование также является разновидностью биортогонального преобразования и использует следующую пару фильтров:
- 7.3. Применение вейвлет-преобразований для сжатия изображения
- 8. Быстрые алгоритмы ортогональных преобразований
- 8.1. Вычислительная сложность дпф и способы её сокращения
- 8.2. Запись алгоритма бпф в векторно-матричной форме
- 8.3. Представление алгоритма бпф в виде рекурсивных соотношений
- 8.4. Алгоритмы бпф с прореживанием по времени и по частоте
- 8.6. Вычислительная сложность алгоритмов бпф
- 8.7. Выполнение бпф для случаев
- 8.8. Быстрое преобразование Хартли
- 8.9. Быстрое преобразование Адамара
- 8.10. Выбор метода вычисления свертки / корреляции
- 9. Алгоритмы нелинейной обработки сигналов
- 9.1. Ранговая фильтрация
- 9.2. Взвешенная ранговая фильтрация
- 9.3. Скользящая эквализация гистограмм
- 9.4. Преобразование гистограмм распределения
- Контрольные вопросы и задания. Разделы 1-3.
- Раздел 4
- Разделы 5 и 6
- Раздел 5
- Раздел 8
- Раздел 9
- Кафедра вычислительной техники