4.1.2. Теорема Котельникова
Условие, при котором возможно восстановление сигнала без потерь, определяется из теоремы Котельникова [16,21].
Прямая формулировка теоремы Котельникова. Если сигнал имеет финитную спектральную плотность, локализованную в полосе частот, то он может быть без потерь представлен дискретными отсчётами, удовлетворяющих условию:
(4.2)
В зарубежной литературе теорему Котельникова чаще называют теоремой Найквиста или теоремой отсчётов.
Исходный сигнал в этом случае восстанавливается в следующем виде:
(4.3).
В общем случае, можно записать, что сигнал восстанавливается с помощью системы восстанавливающих функций:
В случае теоремы Котельникова восстанавливающие функции имеют вид:
Пусть сигнал имеет вид – согласно свойствам преобразования Фурье (см. раздел 2.5) для восстановления такого сигнала можно воспользоваться полосой частот ширинойи со средней частотой. В спектральной области такой полосе будут соответствовать две сдвинутые копии спектра. Восстанавливающая функция будет иметь вид:
.
Обратная формулировка теоремы Котельникова/ Если f(x) задана в ограниченной области , то ее спектрF(ν) полностью определен набором отсчетов в точках, равноотстоящих друг от друга на расстоянии .
Поясним выбор шагов дискретизации по теореме Котельникова на рис. 4.2.
=>
Рис.4.2. Выбор шага дискретизации по теореме Котельникова
При дискретизации согласно теореме Котельникова исходная функция f(x) может быть получена по ее дискретным значениям по формуле:
причем шаг дискретизации составляет
Однако согласно теории Фурье-анализа конечной апериодической функции f(x) соответствует бесконечный спектр и наоборот, конечный спектр соответствует бесконечной исходной функции.
Поэтому для реальных сигналов условия теоремы Котельникова в строгом смысле слова не выполняются.
Все реальные сигналы ограничены во времени и имеют неограниченный спектр, т.е. fв=.
В соответствии с рядом Котельникова восстановление осуществляется по бесконечному числу отсчетов (- k ).
Поскольку сигнал восстанавливается по бесконечному числу отсчетов функций, то его восстановление осуществляется с бесконечной задержкой во времени.
Несмотря на эти недостатки, теорема Котельникова имеет фундаментальное значение, так как позволяет определить предельные возможности дискретной передачи сигналов.
Пример.
Передается речевой сигнал в полосе частот F (от 0 до 3000 Гц). Время передачи t = 10 сек. Каждый дискретный отсчет кодируется 5 двоичными разрядами.
Определить минимальный объем памяти, требуемый для хранения информации Wзу .
T=1/2F=1/6000=0,00016 с.,
следовательно, число отсчетов на интервале t:
N=t/T=10/0,00016=60000.
Объем ЗУ: Wзу =60000 5 = 300000 бит.
На практике теорему Котельникова для выбора шага дискретизации применяют следующим образом:
Определяют эффективную ширину спектра fэ.
Вычисляют шаг дискретизации T=1/2fэ.
На приемной стороне восстанавливается сигнал по следующей формуле
,
где Т - длительность сигнала; t - шаг дискретизации; =t/Т - база сигнала.
Итак, в результате дискретизации в соответствии с теоремой Котельникова от x(t) мы переходим к набору отсчетов или к вектору:
X = {xn}; n=0, N-1.
- Цифровая обработка сигналов
- Санкт-Петербург
- Содержание
- 7.2. Вейвлеты 106
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- 2. Понятие сигналов. Виды сигналов
- 2.1. Виды сигналов
- 2.2. Энергия и мощность сигнала
- 2.3. Представление периодических сигналов в частотной области
- 2.4. Представление в частотной области непериодических сигналов
- Введение в теорию ортогональных преобразований
- 2.4.2. Интегральное преобразование Фурье
- 2.5. Свойства преобразования Фурье
- 2.5.1. Фурье-анализ неинтегрируемых сигналов
- 2.6. Интегральное преобразование Хартли
- 2.7. Случайные сигналы
- 2.7.1.Модели случайных процессов
- 2.7.2. Вероятностные характеристики случайного процесса Функциональные характеристики.
- Числовые характеристики
- Примеры случайных процессов с различными законами распределения
- 3. Корреляционный анализ сигналов
- 3.1. Корреляционная функция (кф):
- 3.2. Взаимная корреляционная функция
- 3.3. Взаимный спектр сигналов
- 3.4. Корреляционные функции случайных процессов
- 3.4.1. Стационарные и эргодические случайные процессы
- 3.5. Спектральные характеристики случайных процессов
- 3.5.1. Теорема Винера-Хинчина
- 3.6. Комплексная огибающая сигнала
- 4. Переход от аналоговых сигналов к цифровым
- 4.1. Дискретизация сигналов
- 4.1.1. Влияние формы дискретизирующих импульсов
- 4.1.2. Теорема Котельникова
- 4.1.3. Дискретизация при использовании квадратурных сигналов
- 4.1.4. Определение шага временной дискретизации при восстановлении сигнала полиномами 0-го порядка
- 4.1.5. Определение шага дискретизации при заданной автокорреляционной функции
- Изменение частоты дискретизации. При решение различных задач обработки сигналов достаточно часто требуется изменение частоты дискретизации сигнала.
- 4.2. Квантование непрерывных сигналов по уровню
- 5. Основные типы дискретных алгоритмов цифровой обработки сигналов
- 5.1. Линейные и нелинейные преобразования
- 5.2. Характеристики линейных систем
- 5.4. Апериодическая свертка и корреляция
- 5.5. Двумерная апериодическая свертка и корреляция
- 5.6 Нерекурсивные и рекурсивные фильтры
- 5.7. Метод синхронного или когерентного накопления
- 5.8. Адаптивные фильтры.
- 5.8.1. Фильтр Винера-Хопфа.
- 5.10. Фильтр Калмана.
- 6. Дискретные ортогональные преобразования
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 6.1. Дискретное преобразование Фурье
- 6.2. Дискретное преобразование Хартли
- 6.3. Двумерные дискретные преобразования Фурье и Хартли
- 6.4. Ортогональные преобразования в диадных базисах
- 6.5. Дискретное косинусное преобразование
- 6.6. Оконное преобразование Фурье
- 6.7. Выполнение фильтрации в частотной области
- Виды фильтров
- 7. Вейвлет преобразования или разложение по всплескам
- 7.1. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- 7.2. Вейвлеты
- 7.2.1. Непрерывные вейвлет преобразования
- 7.2.2. Частотный подход к вейвлет преобразованиям
- 7.2.3. Вейвлет-ряды дискретного времени
- 7.2.4. Дискретное вейвлет-преобразование
- 7.2.4.1. Условия полного восстановления сигнала
- 7.2.5. Пакеты вейвлетов (алгоритм одиночного дерева)
- 7.2.6. Целочисленное вейвлет-преобразование
- Целочисленное вычисление вейвлет–преобразование (2,2). Это преобразование эквивалентно вейвлет-преобразованию Хаара, использующему следующие фильтры декомпозиции:
- Целочисленное вычисление вейвлет-преобразования (2,6). Данное преобразование эквивалентно использованию следующих фильтров анализа:
- Целочисленное вычисление вейвлет –преобразования (5,3). Такое преобразование также является разновидностью биортогонального преобразования и использует следующую пару фильтров:
- 7.3. Применение вейвлет-преобразований для сжатия изображения
- 8. Быстрые алгоритмы ортогональных преобразований
- 8.1. Вычислительная сложность дпф и способы её сокращения
- 8.2. Запись алгоритма бпф в векторно-матричной форме
- 8.3. Представление алгоритма бпф в виде рекурсивных соотношений
- 8.4. Алгоритмы бпф с прореживанием по времени и по частоте
- 8.6. Вычислительная сложность алгоритмов бпф
- 8.7. Выполнение бпф для случаев
- 8.8. Быстрое преобразование Хартли
- 8.9. Быстрое преобразование Адамара
- 8.10. Выбор метода вычисления свертки / корреляции
- 9. Алгоритмы нелинейной обработки сигналов
- 9.1. Ранговая фильтрация
- 9.2. Взвешенная ранговая фильтрация
- 9.3. Скользящая эквализация гистограмм
- 9.4. Преобразование гистограмм распределения
- Контрольные вопросы и задания. Разделы 1-3.
- Раздел 4
- Разделы 5 и 6
- Раздел 5
- Раздел 8
- Раздел 9
- Кафедра вычислительной техники