7.1. Понятие о Wavelet-преобразованиях. Преобразование Хаара
В ряде случаев оказывается более удобным в качестве базисов разложения использовать такие системы функций, для которых коэффициенты разложения учитывают поведение исходной функции лишь в нескольких близкорасположенных точках.
Использование такого базиса по своей сути означает переход от частотного анализа к масштабному, т.е. функция f(x) анализируется с помощью некоторой “стандартной” математической функции, изменяемой по масштабу и сдвигу на некоторую величину.
Первое упоминание об этих функциях появилось в работах Хаара в 1909 году. В 30-е годы начались более детальные исследования возможностей представления сигналов с использованием базисных масштабируемых функций. Пол Леви, используя масштабируемую базисную функцию типа функции Хаара, исследовал разновидность случайного сигнала - броуновское движение. Он обнаружил преимущество в применении базисных функций Хаара перед функциями Фурье.
В период 60-х - 80-х годов Вейс и Кофман исследовали простейшие элементы функционального пространства, названные ими атомами, с целью обнаружить атомы для произвольной функции и найти "правила сборки", позволяющие реконструировать все элементы функционального пространства, используя эти атомы. В 1980 году Гроссман и Марлет определили такие функции как Wavelet-функции. В переводе с английского Wavelet – всплеск, поэтому в отечественной литературе встречается термин «разложение по всплескам» наряду с вейвлет-анализом.
В конце 80-х г.г. Мейер и Добичи на основе исследований Марлета создали ортогональные базисы Wavelet-функций, которые и стали основой современных Wavelet-функций. Сходство Wavelet и Фурье преобразований состоит в следующем:
1. Оба они являются линейными преобразованиями и предназначены для обработки блоков данных, содержащих log2 N элементов.
2.Обратные матрицы ДПФ и DWT (discret wavelet transform) равны транспонированной, причем строки самих матриц содержат функции cos(x) и sin(x), а для DWT - более сложные базисные функции - wavelet.
Наиболее важное различие между этими двумя видами преобразований состоит в том, что отдельные функции wavelet локализованы в пространстве, а синусные и косинусные - нет. Благодаря этой особенности, DWT находит большое число применений, в том числе для сжатия данных, распознавания образов и подавления шумовой составляющей принимаемого сигнала.
Преобразование Wavelet состоит из неограниченного набора функций. Семейство Wavelet различают по тому, насколько компактны базисные функции в пространстве и насколько они гладки. Некоторые их них имеют фрактальную структуру. В каждом семействе они могут быть разбиты на подклассы по числу коэффициентов и уровню итераций. Чаще всего внутри семейства функция классифицируется по номеру моментов исчезновения.
Набор дискретных Wavelet-функций в общем виде может быть описан как
W[s,l](x) = 2-s/2W(2-s,x-l), (7.2)
где s и l - целые числа, которые масштабируют и сдвигают материнскую функцию W(x) для создания wavelet.
Индекс масштаба s показывает ширину wavelet, а индекс смещения l определяет ее позицию. Материнские функции масштабированы или растянуты коэффициентом, кратным степени 2 и приведены к целому. Таким образом, если известна материнская функция, то может быть построен и весь базис.
В свою очередь, само Wawelet-преобразование может быть записано в виде [2,26]:
N-2
V(x) = ∑(-1)k zk+l W(2x+l) (7.3)
k=1
где Zk+l – отсчеты исходного сигнала.
Метод разложения по всплескам широко используется для выделения шумовой компоненты при обработке данных.
К wavelet-подобным функциям относятся функции Хаара [6]. Для N=4 и N=8 матрицы ядра преобразования имеют вид:
Основные свойства матрицы ядра преобразования Хаара состоят в следующем:
а) ее элементы не мультипликативны
б) матрица не симметрична, откуда следует, что для обратного преобразования матрицу ядра необходимо транспонировать, т.е.
XN-1 = XNT
в) строки матрицы определяют переодические функции с периодом N.
Однако матрица ядра преобразования Хаара является не ортонормированной, т.е. для данного преобразования не выполняется теорема Парсеваля. Поэтому для выполнения теоремы Парсеваля требуется ввести дополнительную нормировку, такая нормировка заключается в умножении на 2 тех элементов вектора результатов, которые соответствуют строкам матрицы с нулевыми компонентами. Для строк, содержащих N/2 ненулевых элемента такое умножение выполняется один раз, для строк с N/4 ненулевыми элементами - два раза и так далее. Подобную нормировку необходимо выполнять как при выполнении прямого, так и обратного преобразования Хаара.
Близким к преобразованию Хаара является усеченное преобразование Адамара, отличающееся, по своей сути, лишь порядком следования строк матрицы ядра преобразования [6].
- Цифровая обработка сигналов
- Санкт-Петербург
- Содержание
- 7.2. Вейвлеты 106
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- 2. Понятие сигналов. Виды сигналов
- 2.1. Виды сигналов
- 2.2. Энергия и мощность сигнала
- 2.3. Представление периодических сигналов в частотной области
- 2.4. Представление в частотной области непериодических сигналов
- Введение в теорию ортогональных преобразований
- 2.4.2. Интегральное преобразование Фурье
- 2.5. Свойства преобразования Фурье
- 2.5.1. Фурье-анализ неинтегрируемых сигналов
- 2.6. Интегральное преобразование Хартли
- 2.7. Случайные сигналы
- 2.7.1.Модели случайных процессов
- 2.7.2. Вероятностные характеристики случайного процесса Функциональные характеристики.
- Числовые характеристики
- Примеры случайных процессов с различными законами распределения
- 3. Корреляционный анализ сигналов
- 3.1. Корреляционная функция (кф):
- 3.2. Взаимная корреляционная функция
- 3.3. Взаимный спектр сигналов
- 3.4. Корреляционные функции случайных процессов
- 3.4.1. Стационарные и эргодические случайные процессы
- 3.5. Спектральные характеристики случайных процессов
- 3.5.1. Теорема Винера-Хинчина
- 3.6. Комплексная огибающая сигнала
- 4. Переход от аналоговых сигналов к цифровым
- 4.1. Дискретизация сигналов
- 4.1.1. Влияние формы дискретизирующих импульсов
- 4.1.2. Теорема Котельникова
- 4.1.3. Дискретизация при использовании квадратурных сигналов
- 4.1.4. Определение шага временной дискретизации при восстановлении сигнала полиномами 0-го порядка
- 4.1.5. Определение шага дискретизации при заданной автокорреляционной функции
- Изменение частоты дискретизации. При решение различных задач обработки сигналов достаточно часто требуется изменение частоты дискретизации сигнала.
- 4.2. Квантование непрерывных сигналов по уровню
- 5. Основные типы дискретных алгоритмов цифровой обработки сигналов
- 5.1. Линейные и нелинейные преобразования
- 5.2. Характеристики линейных систем
- 5.4. Апериодическая свертка и корреляция
- 5.5. Двумерная апериодическая свертка и корреляция
- 5.6 Нерекурсивные и рекурсивные фильтры
- 5.7. Метод синхронного или когерентного накопления
- 5.8. Адаптивные фильтры.
- 5.8.1. Фильтр Винера-Хопфа.
- 5.10. Фильтр Калмана.
- 6. Дискретные ортогональные преобразования
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 6.1. Дискретное преобразование Фурье
- 6.2. Дискретное преобразование Хартли
- 6.3. Двумерные дискретные преобразования Фурье и Хартли
- 6.4. Ортогональные преобразования в диадных базисах
- 6.5. Дискретное косинусное преобразование
- 6.6. Оконное преобразование Фурье
- 6.7. Выполнение фильтрации в частотной области
- Виды фильтров
- 7. Вейвлет преобразования или разложение по всплескам
- 7.1. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- 7.2. Вейвлеты
- 7.2.1. Непрерывные вейвлет преобразования
- 7.2.2. Частотный подход к вейвлет преобразованиям
- 7.2.3. Вейвлет-ряды дискретного времени
- 7.2.4. Дискретное вейвлет-преобразование
- 7.2.4.1. Условия полного восстановления сигнала
- 7.2.5. Пакеты вейвлетов (алгоритм одиночного дерева)
- 7.2.6. Целочисленное вейвлет-преобразование
- Целочисленное вычисление вейвлет–преобразование (2,2). Это преобразование эквивалентно вейвлет-преобразованию Хаара, использующему следующие фильтры декомпозиции:
- Целочисленное вычисление вейвлет-преобразования (2,6). Данное преобразование эквивалентно использованию следующих фильтров анализа:
- Целочисленное вычисление вейвлет –преобразования (5,3). Такое преобразование также является разновидностью биортогонального преобразования и использует следующую пару фильтров:
- 7.3. Применение вейвлет-преобразований для сжатия изображения
- 8. Быстрые алгоритмы ортогональных преобразований
- 8.1. Вычислительная сложность дпф и способы её сокращения
- 8.2. Запись алгоритма бпф в векторно-матричной форме
- 8.3. Представление алгоритма бпф в виде рекурсивных соотношений
- 8.4. Алгоритмы бпф с прореживанием по времени и по частоте
- 8.6. Вычислительная сложность алгоритмов бпф
- 8.7. Выполнение бпф для случаев
- 8.8. Быстрое преобразование Хартли
- 8.9. Быстрое преобразование Адамара
- 8.10. Выбор метода вычисления свертки / корреляции
- 9. Алгоритмы нелинейной обработки сигналов
- 9.1. Ранговая фильтрация
- 9.2. Взвешенная ранговая фильтрация
- 9.3. Скользящая эквализация гистограмм
- 9.4. Преобразование гистограмм распределения
- Контрольные вопросы и задания. Разделы 1-3.
- Раздел 4
- Разделы 5 и 6
- Раздел 5
- Раздел 8
- Раздел 9
- Кафедра вычислительной техники