5. Основные типы дискретных алгоритмов цифровой обработки сигналов
Математические методы обработки сигналов можно подразделить на три группы, если в основу классификации положить принцип формирования отдельного элемента (отсчета) результата по некоторой совокупности элементов (отсчетов) исходного сигнала [16].
Точечные преобразования – в таких преобразованиях обработка каждого элемента исходных данных производится независимо от соседнего. Иначе говоря, значение каждого отсчета результата определяется как функция от одного отсчета исходного сигнала, причем номера отсчетов сигнала и результата одинаковы.
Иначе говоря, пусть требуется обработать вектор из n отсчетов сигнала: (5.2)
и получить последовательность чисел:
, (5.3)
причем
yi = f(xi) (5.4)
Точечные преобразования достаточно просты и наименее громоздки с точки зрения вычислительных затрат. Если обрабатывается матрица размером N x N элементов отсчетов исходного двумерного сигнала, то вычислительная сложность процедуры точечных преобразований составит
Qт = N2 (БО),
где под базовой операцией (БО) понимается операция вида (5.4).
Локальные преобразования - при локальных преобразованиях обеспечивается формирование каждого элемента матрицы или вектора результата как функции от некоторого множества соседних элементов матрицы или вектора отсчетов исходного сигнала, составляющих некоторую локальную окрестность. При этом полагается, что местоположение вычисляемого отсчета результата (или текущий индекс элемента) задается координатами (или текущими индексами) центрального элемента локальной окрестности. Для формирования следующего элемента матрицы результата выполняется смещение окрестности вдоль строки матрицы исходных данных или вдоль исходного вектора. Такая перемещаемая окрестность часто носит название окна сканирования. При обработке матрицы исходных данных после прохождения всей строки матрицы исходных данных окно сканирования смещается на одну строку и возвращается в начало следующей строки, после чего продолжается обработка. Просматриваемая при перемещении окна сканирования полоса строк матрицы носит название полосы сканирования. Иначе говоря, при такой обработке
yi = F(X^ ) ; X^ = {xi-m/2, xi-m/2+1, ..., xi, ..., xi+m/2-1, xi+m/2}, (5.5)
где i = 0,N-1 - индекс отсчета результата , m - размер окна сканирования. Если i<m/2 или i>N-m/2, что имеет место на практике при обработке начальных и конечных отсчетов вектора исходного сигнала, то элементы вектора исходных данных с "недостающими" индексами полагаются равными нулю.
Вычислительная сложность локального преобразования составляет
Qл = N2 m2 (БО),
где под базовой операцией понимается выполнение заданного преобразования для отдельного отсчета исходных сигналов. Примером локальных преобразований могут служить апериодическая свертка или корреляция, а также процедуры ранговой фильтрации.
Глобальное преобразование предусматривает формирование каждого отсчета результата как функции от всей совокупности отсчетов исходного сигнала и некоторого множества меняющихся от одного отсчета результата к другому по определенному правилу коэффициентов, составляющих так называемое ядро преобразования. В случае обработки одномерного исходного сигнала глобальное преобразование можно определить как
Yi = F(Gi,X); ,i = 0, N-1 (5.6)
где Gi – изменяемое ядро преобразования. Вычислительная сложность глобального преобразования в общем случае для случая обработки двумерного сигнала составляет
Qг = N4 (БО),
где под базовой операцией понимается выполнение заданного преобразования вида (1.6) для отдельного элемента исходных данных. Примером подобных преобразований могут служить дискретные ортогональные преобразования типа преобразования Фурье, Хартли, Адамара.
- Цифровая обработка сигналов
- Санкт-Петербург
- Содержание
- 7.2. Вейвлеты 106
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- 2. Понятие сигналов. Виды сигналов
- 2.1. Виды сигналов
- 2.2. Энергия и мощность сигнала
- 2.3. Представление периодических сигналов в частотной области
- 2.4. Представление в частотной области непериодических сигналов
- Введение в теорию ортогональных преобразований
- 2.4.2. Интегральное преобразование Фурье
- 2.5. Свойства преобразования Фурье
- 2.5.1. Фурье-анализ неинтегрируемых сигналов
- 2.6. Интегральное преобразование Хартли
- 2.7. Случайные сигналы
- 2.7.1.Модели случайных процессов
- 2.7.2. Вероятностные характеристики случайного процесса Функциональные характеристики.
- Числовые характеристики
- Примеры случайных процессов с различными законами распределения
- 3. Корреляционный анализ сигналов
- 3.1. Корреляционная функция (кф):
- 3.2. Взаимная корреляционная функция
- 3.3. Взаимный спектр сигналов
- 3.4. Корреляционные функции случайных процессов
- 3.4.1. Стационарные и эргодические случайные процессы
- 3.5. Спектральные характеристики случайных процессов
- 3.5.1. Теорема Винера-Хинчина
- 3.6. Комплексная огибающая сигнала
- 4. Переход от аналоговых сигналов к цифровым
- 4.1. Дискретизация сигналов
- 4.1.1. Влияние формы дискретизирующих импульсов
- 4.1.2. Теорема Котельникова
- 4.1.3. Дискретизация при использовании квадратурных сигналов
- 4.1.4. Определение шага временной дискретизации при восстановлении сигнала полиномами 0-го порядка
- 4.1.5. Определение шага дискретизации при заданной автокорреляционной функции
- Изменение частоты дискретизации. При решение различных задач обработки сигналов достаточно часто требуется изменение частоты дискретизации сигнала.
- 4.2. Квантование непрерывных сигналов по уровню
- 5. Основные типы дискретных алгоритмов цифровой обработки сигналов
- 5.1. Линейные и нелинейные преобразования
- 5.2. Характеристики линейных систем
- 5.4. Апериодическая свертка и корреляция
- 5.5. Двумерная апериодическая свертка и корреляция
- 5.6 Нерекурсивные и рекурсивные фильтры
- 5.7. Метод синхронного или когерентного накопления
- 5.8. Адаптивные фильтры.
- 5.8.1. Фильтр Винера-Хопфа.
- 5.10. Фильтр Калмана.
- 6. Дискретные ортогональные преобразования
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 6.1. Дискретное преобразование Фурье
- 6.2. Дискретное преобразование Хартли
- 6.3. Двумерные дискретные преобразования Фурье и Хартли
- 6.4. Ортогональные преобразования в диадных базисах
- 6.5. Дискретное косинусное преобразование
- 6.6. Оконное преобразование Фурье
- 6.7. Выполнение фильтрации в частотной области
- Виды фильтров
- 7. Вейвлет преобразования или разложение по всплескам
- 7.1. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- 7.2. Вейвлеты
- 7.2.1. Непрерывные вейвлет преобразования
- 7.2.2. Частотный подход к вейвлет преобразованиям
- 7.2.3. Вейвлет-ряды дискретного времени
- 7.2.4. Дискретное вейвлет-преобразование
- 7.2.4.1. Условия полного восстановления сигнала
- 7.2.5. Пакеты вейвлетов (алгоритм одиночного дерева)
- 7.2.6. Целочисленное вейвлет-преобразование
- Целочисленное вычисление вейвлет–преобразование (2,2). Это преобразование эквивалентно вейвлет-преобразованию Хаара, использующему следующие фильтры декомпозиции:
- Целочисленное вычисление вейвлет-преобразования (2,6). Данное преобразование эквивалентно использованию следующих фильтров анализа:
- Целочисленное вычисление вейвлет –преобразования (5,3). Такое преобразование также является разновидностью биортогонального преобразования и использует следующую пару фильтров:
- 7.3. Применение вейвлет-преобразований для сжатия изображения
- 8. Быстрые алгоритмы ортогональных преобразований
- 8.1. Вычислительная сложность дпф и способы её сокращения
- 8.2. Запись алгоритма бпф в векторно-матричной форме
- 8.3. Представление алгоритма бпф в виде рекурсивных соотношений
- 8.4. Алгоритмы бпф с прореживанием по времени и по частоте
- 8.6. Вычислительная сложность алгоритмов бпф
- 8.7. Выполнение бпф для случаев
- 8.8. Быстрое преобразование Хартли
- 8.9. Быстрое преобразование Адамара
- 8.10. Выбор метода вычисления свертки / корреляции
- 9. Алгоритмы нелинейной обработки сигналов
- 9.1. Ранговая фильтрация
- 9.2. Взвешенная ранговая фильтрация
- 9.3. Скользящая эквализация гистограмм
- 9.4. Преобразование гистограмм распределения
- Контрольные вопросы и задания. Разделы 1-3.
- Раздел 4
- Разделы 5 и 6
- Раздел 5
- Раздел 8
- Раздел 9
- Кафедра вычислительной техники