5.5. Двумерная апериодическая свертка и корреляция
Важное место среди операций линейной обработки сигналов занимает операция перемножения матриц одинаковой размерности. Такая операция имеет вид:
, (5.15)
где иисходные матрицы порядкаN, а - результирующая матрица того же порядка. Каждый элемент матрицыформируется в соответствии с выражением:
где - элементы исходных матриц.
На основе операций (5.15) и (5.16) выполняется вычисление функций двумерной апериодической свертки/корреляции исходного двумерного сигнала (изображения) с двумерным ядром. Подобное преобразование часто используется как для удаления шумов, так и для выделения мелких объектов.
Математически двумерная апериодическая свертка может быть описана следующим образом:
где - отсчеты результатов вычислений (отсчеты свертки),- отсчеты весовой функции окна (ядра свертки) размерностьюM x M отсчетов, причем N >> M. Очевидно, что размерность матрицы, описывающей двумерную свертку, равна (N + M-1) x (N + M -1) отсчетов. Поэтому матрица исходных данных также должна быть дополнена до указанного размера нулевыми элементами по краям кадра.
Отсчеты свертки формируются при перемещении окна вдоль строки исходного изображения. Для каждого положения окна формируется один отсчет свертки, после чего окно сдвигается на один элемент вдоль строки (т.е. на один столбец). Обработка начинается с элемента x исходного изображения. После прохождения i-й строки изображения (i= 1,N) окно смещается на одну строку вниз и возвращается к началу следующей (i + 1)-й строки изображения. По окончании обработки кадра изображения окно перемещается в исходное положение.
При вычислении свертки можно распараллелить вычисления по столбцам окна сканирования, выполняя параллельно вычисление произведений столбцов ядра свертки и столбцовтекущей полосы сканирования изображения. Поэтому для окончательного вычисления отсчета свертки достаточно сформировать сумму:
(5.18)
соответствующую отсчету свертки с номером j, расположенному в средней строке полосы шириной М.
Представляет интерес распараллеливание по разрядным срезам, поскольку в этом случае практически исключается операция умножения [16]. При разрядно-срезовой обработке данные должны быть представлены в формате с фиксированной точкой. Представим значение элемента изображения в следующем виде :
, (5.19)
где - q-ый разряд(q= 1,…, Q), (g=(1,Q)) где Q - разрядность данных.
С учетом этого процедура вычисления свертки принимает вид:
(5.20)
Таким образом, процедура двумерной апериодической свертки для одного положения окна сводится к M x N x Q операциям сложения и (Q-1) операциям сдвига. Умножение под знаком суммы сводится к операции вида :
при ипри.
Поэтому разрядно-срезовый алгоритм вычисления свертки или корреляции для одного положения окна может быть представлен в виде [16]:
начало;
для цикл:
для цикл:
для цикл:
если , то
иначе ;
;
конец цикла по ;
конец цикла по ;
;
конец цикла по ;
;
конец.
Физический смысл функций свертки и корреляции состоит в том, что они являются количественной мерой совпадения (сходства) двух последовательностей f(x) и g(x). При этом наиболее полно мера сходства может быть определена по функции корреляции, в связи с чем функция взаимокорреляции (или кросскорреляции) может быть использована для распознавания сигналов. Если распознаваемый сигнал f(t) точно соответствует эталонному сигналу g(t), то результирующий сигнал k(t) принимает значение:
k(t)=max при f(t) g(t),
что соответствует функции автокорреляции. Если сигналы отличаются, то k(t)max.
Кроме того, при обработке двумерных сигналов (изображений объектов) координаты максимума данной функции определяют центр тяжести исходного распознаваемого объекта, что позволяет определить и его местоположение (т.е. запеленговать объект). По этим причинам вычисление одномерной или двумерной корреляции лежит в основе целого ряда методов распознавания.
Таким образом, функции линейной апериодической свертки и корреляции полезны для распознавания сигналов заданной формы. На этом принципе работают корреляционные методы распознавания. Свертка определяется путем скольжения эталона по вектору исходного сигнала, и максимум функции будет тогда, когда исходный сигнал совпал с эталоном. Функция апериодической свертки, кроме того, оказывается полезной для удаления, например, низкочастотных помех.
- Цифровая обработка сигналов
- Санкт-Петербург
- Содержание
- 7.2. Вейвлеты 106
- Введение
- 1. Основные понятия цифровой обработки сигналов
- Понятие о первичной и вторичной обработке сигналов
- Основные требования к системам цос
- 2. Понятие сигналов. Виды сигналов
- 2.1. Виды сигналов
- 2.2. Энергия и мощность сигнала
- 2.3. Представление периодических сигналов в частотной области
- 2.4. Представление в частотной области непериодических сигналов
- Введение в теорию ортогональных преобразований
- 2.4.2. Интегральное преобразование Фурье
- 2.5. Свойства преобразования Фурье
- 2.5.1. Фурье-анализ неинтегрируемых сигналов
- 2.6. Интегральное преобразование Хартли
- 2.7. Случайные сигналы
- 2.7.1.Модели случайных процессов
- 2.7.2. Вероятностные характеристики случайного процесса Функциональные характеристики.
- Числовые характеристики
- Примеры случайных процессов с различными законами распределения
- 3. Корреляционный анализ сигналов
- 3.1. Корреляционная функция (кф):
- 3.2. Взаимная корреляционная функция
- 3.3. Взаимный спектр сигналов
- 3.4. Корреляционные функции случайных процессов
- 3.4.1. Стационарные и эргодические случайные процессы
- 3.5. Спектральные характеристики случайных процессов
- 3.5.1. Теорема Винера-Хинчина
- 3.6. Комплексная огибающая сигнала
- 4. Переход от аналоговых сигналов к цифровым
- 4.1. Дискретизация сигналов
- 4.1.1. Влияние формы дискретизирующих импульсов
- 4.1.2. Теорема Котельникова
- 4.1.3. Дискретизация при использовании квадратурных сигналов
- 4.1.4. Определение шага временной дискретизации при восстановлении сигнала полиномами 0-го порядка
- 4.1.5. Определение шага дискретизации при заданной автокорреляционной функции
- Изменение частоты дискретизации. При решение различных задач обработки сигналов достаточно часто требуется изменение частоты дискретизации сигнала.
- 4.2. Квантование непрерывных сигналов по уровню
- 5. Основные типы дискретных алгоритмов цифровой обработки сигналов
- 5.1. Линейные и нелинейные преобразования
- 5.2. Характеристики линейных систем
- 5.4. Апериодическая свертка и корреляция
- 5.5. Двумерная апериодическая свертка и корреляция
- 5.6 Нерекурсивные и рекурсивные фильтры
- 5.7. Метод синхронного или когерентного накопления
- 5.8. Адаптивные фильтры.
- 5.8.1. Фильтр Винера-Хопфа.
- 5.10. Фильтр Калмана.
- 6. Дискретные ортогональные преобразования
- Задачи цос, решаемые методами дискретных ортогональных преобразований
- 6.1. Дискретное преобразование Фурье
- 6.2. Дискретное преобразование Хартли
- 6.3. Двумерные дискретные преобразования Фурье и Хартли
- 6.4. Ортогональные преобразования в диадных базисах
- 6.5. Дискретное косинусное преобразование
- 6.6. Оконное преобразование Фурье
- 6.7. Выполнение фильтрации в частотной области
- Виды фильтров
- 7. Вейвлет преобразования или разложение по всплескам
- 7.1. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- 7.2. Вейвлеты
- 7.2.1. Непрерывные вейвлет преобразования
- 7.2.2. Частотный подход к вейвлет преобразованиям
- 7.2.3. Вейвлет-ряды дискретного времени
- 7.2.4. Дискретное вейвлет-преобразование
- 7.2.4.1. Условия полного восстановления сигнала
- 7.2.5. Пакеты вейвлетов (алгоритм одиночного дерева)
- 7.2.6. Целочисленное вейвлет-преобразование
- Целочисленное вычисление вейвлет–преобразование (2,2). Это преобразование эквивалентно вейвлет-преобразованию Хаара, использующему следующие фильтры декомпозиции:
- Целочисленное вычисление вейвлет-преобразования (2,6). Данное преобразование эквивалентно использованию следующих фильтров анализа:
- Целочисленное вычисление вейвлет –преобразования (5,3). Такое преобразование также является разновидностью биортогонального преобразования и использует следующую пару фильтров:
- 7.3. Применение вейвлет-преобразований для сжатия изображения
- 8. Быстрые алгоритмы ортогональных преобразований
- 8.1. Вычислительная сложность дпф и способы её сокращения
- 8.2. Запись алгоритма бпф в векторно-матричной форме
- 8.3. Представление алгоритма бпф в виде рекурсивных соотношений
- 8.4. Алгоритмы бпф с прореживанием по времени и по частоте
- 8.6. Вычислительная сложность алгоритмов бпф
- 8.7. Выполнение бпф для случаев
- 8.8. Быстрое преобразование Хартли
- 8.9. Быстрое преобразование Адамара
- 8.10. Выбор метода вычисления свертки / корреляции
- 9. Алгоритмы нелинейной обработки сигналов
- 9.1. Ранговая фильтрация
- 9.2. Взвешенная ранговая фильтрация
- 9.3. Скользящая эквализация гистограмм
- 9.4. Преобразование гистограмм распределения
- Контрольные вопросы и задания. Разделы 1-3.
- Раздел 4
- Разделы 5 и 6
- Раздел 5
- Раздел 8
- Раздел 9
- Кафедра вычислительной техники